

The Computer Measurement Group, Inc. (CMG) is the most influential organization worldwide for the exchange of information among Computer Performance
Evaluation (CPE) professionals. To keep CPE professionals on top of their field, CMG is dedicated to providing its members the education, networking, and
leadership opportunities vital to success in today’s competitive industry.

PUBLICATIONS & MEMBERSHIP BENEFITS:

• The Proceedings contain all the information presented at the annual CMG conference. With more than one hundred papers on current hot
topics, the Proceedings is your best source of the latest information in the expanding field of CPE. Some Late Breaking papers may not be in the
Proceedings; they appear in a Journal issue.

• The Journal provides an additional source of information with emphasis on special interest topics and/or focus on specific CPE industry issues.
Members receive the Journal at least three times a year.

• The Bulletin is a newsletter written by members for members. This publication is available in electronic format and includes vital information on
CMG’s national, regional, and international groups.

• Various Internet Services. CMG provides various online membership only services including a directory of all CMG members.

• CMG’s electronic newsletter, MeasureIT, sent to all those who subscribe.

INFORMATION FOR AUTHORS

The Journal of Computer Resource Management (CMG Journal) is distributed only to members of the Computer Measurement Group, Inc. (CMG). CMG
membership consists primarily of practicing professionals in the area of computer performance, analysis, and capacity planning. The objective of the CMG
Journal is to bring the membership information of current importance involving:

• performance characteristics of computer systems of all sizes and architectures
• techniques to measure, analyze, compare, predict, and report performance
• techniques for managing computer performance, including capacity management, computer cost accounting, and computer performance

reporting
• integration of disparate components into hardware and software systems to meet organization needs.

The intent of CMG is to publish relevant papers as rapidly as possible, preferably within six months of completion. Authors can assist CMG in achieving this
objective by submitting papers in a uniform format.

To submit your paper for consideration in the CMG Journal, it must follow a format consistent with CMG guidelines. For complete instructions on paper
submittal you should download two documents from http://www.cmg.org/national/journal.html located on the CMG Website. These documents are
‘Paper Guidelines and Instructions’ and ‘CMG License to Publish.’ The first document will provide guidelines on format and text; the second document is a
required form that must be signed/returned to CMG that grants your permission for CMG to publish your paper.

Here are some highlights on what is expected from authors:

• Camera-Ready Papers, in Microsoft Word, should be sent via email to journal@cmg.org

• Electronic copies of the paper are preferred; send two hardcopies of the paper in the required format (see ‘Instructions’ document for details) if
an electronic copy is not possible. Hardcopies must be camera ready Papers should be submitted three months prior to the Journal publication
date

• Please indicate if you wish to review the paper after editing, prior to publication
• Refer to all tables and figures by number

Authors must read and follow the ‘Instructions for Preparing Papers’ document. The above highlights do not include all the guidelines required for
submitting your paper. Papers not complying with the instructions may be rejected for inclusion in the CMG Journal.

Entire publication copyright © 2011 by the Computer Measurement Group, Inc. All Rights Reserved.
Front cover image: © Designer: Rob Harrigan | Agency: dreamstime.com

Published by the Computer Measurement Group, a not for profit Illinois membership corporation. Publication in the CMG Journal implies acknowledgment of the author’s (or
authors’) copyright and republication rights. Permission to reprint in whole or in part may be granted for educational and scientific purposes upon written application to the
Editor, the Computer Measurement Group, 151 Fries Mill Road, Executive Campus, Suite 104, Turnersville, NJ 08012. Permission is hereby granted to members of CMG to
reproduce this publication in whole or in part solely for internal distributions within a member’s organization provided the copyright notice printed above is set forth in full
text on the title page of each item reproduced. CMG acknowledges the ownership of trademarks and registered trademarks that appear in this publication. They are each to be
regarded as appearing with the appropriate ® or ™ symbols at first mention.

The ideas and concepts set forth in this publication are solely those of the respective authors, and not those of CMG. CMG does not endorse, guarantee, or otherwise certify any
such ideas or concepts in any application or usage. Printed in the United States of America.

Journal of Computer Resource Management

A Publication of the Computer Measurement Group

Issue 130

Table of Contents

Letter from the Editor .. 4

Capacity Planning Concepts for Telecom Systems... .. 6

 Tim Sweetz

Why Models Fail - A Case Study: A Workload Analysis Model... 15

 Tom Wilson

An Effective Impementation of CMMI for Performance Testing Projects: A Case Study... 21

 Nidhi Tiwari and Veena Rajendiran

Not Your Father's or Grandfather's Mainframe Anymore.. 26

 David J. Lytle

 Processor Selection for Optimum Middleware Price/Performance... 36

 David A. Kra

Exploratory Study of Performance Evaluation Models for DistributedSoftware Arhitecture..................................47

 S. O. Olabiyisi, E. O. Omidora, et al.

CMG Journal #130: Letter from the Editor

Welcome to CMG Journal number 130, our third and final issue for 2011. Fall is upon us in the
northern hemisphere, all the leaves are brown and the sky is gray. However, once again we
have a great issue for you, guaranteed to brighten up your day and carry you through to
Conference. This issue features six outstanding papers on a wide variety of topics. This will be
our last issue for 2011.

Leading this issue off is Tim Sweetz with Capacity Planning Concepts for Telecom Systems.
Telecom systems are the primary means of communication between customers and companies
throughout the world. As these systems have evolved over time, the computerized infrastructure
behind modern call centers provide companies with a high level of customization, but can also
lead to complicated and expensive operational processes. One way to reduce costs associated
with telecom technologies is through the discipline of capacity planning. Tim’s paper will
present some of the key concepts and basic methodologies required to provide capacity planning
services for telecom systems.

Our second paper, Why Models Fail-A Case Study: A Workload Analysis Model is from frequent
CMG contributor Tom Wilson. What does it mean for a model to fail? It means that the model
failed to provide the insight that it was meant to provide. A model starts with an objective, has a
design and implementation, and then is put to use. The case study in Tom’s outstanding paper
examines a workload analysis model, from which a performance test model is derived, and
discusses why the model failed.

Our third paper, An Effective Implementation of CMMI for Performance Testing Projects – a
Case Study was written by Nidhi Tiwari and Veena Rajendiran. Today performance testing is
well recognized, widely practiced and sufficiently equipped with tools. However, little emphasis
is given to process implementation, tracking and improvement of performance testing projects,
resulting in exponentially high Cost of Quality (COQ). The authors share their experience
implementing CMMI for performance testing projects to control their COQ. Subsequent benefits
obtained by organization are also included in the paper.

Batting cleanup is David Lytle with his paper titled Not Your Father’s or Grandfather’s
Mainframe Any More. David reviews the history of mainframe I/O and compares it with
distributed systems I/O. He then highlights some of the more recent developments in mainframe
I/O introduced the past three years and that are currently being implemented on the latest
mainframe processors from IBM.

Our fifth paper, Processor Selection for Optimum Middleware Price/Performance was written by
David Kra. Many middleware products can be deployed onto many combinations of processor
architecture and operating system. Finding the most cost effective combination is complicated by
software pricing based on vendor core weighting factors. David’s paper explains how to combine
core weights, core counts, and performance data to calculate and compare a “Performance Rate
per Weighted Core.” Results are provided for the Oracle data base server as used in published
TPC-C and TPC-H benchmarks.

Last but not least is our sixth and final paper this issue. Exploratory Study of Performance
Evaluation Models for Distributed Software Architecture was written by Boluwaji A.
Akinnuwesi, Faith-Michael Uzoka, Hyacinthe Aboudja, Mathieu Kourouma, Victor W. Mbarika,
S.O Olabiyisi, and E.O Omidiora. Several models have been developed to evaluate the
performance of Distributed Software Architecture (DSA) in order to avoid problems that may
arise during system implementation. This paper presents a review of DSA performance
evaluation models with the view of identifying the common properties of the models. It was
established in this study that the existing models evaluate DSA performance using machine
parameters such as processor speed, buffer size, cache size, server response time, server
execution time, bus and network bandwidth size and lots of others. The models are thus
classified to be machine-centric. Moreover the involvement of end users in the evaluation
process is not emphasized. Software is developed in order to satisfy specific requirements of the
client organization (end-users) and therefore involving users in evaluating DSA performance
should not be underestimated. This study suggests future works on establishing contextual
organizational variables that can be used to evaluate DSA.

Thanks to everyone who contributed to this CMG Journal. CMG'11 is a month away and will be
here before we know it. Hopefully you are planning on attending CMG'11, have registered, and
if you have not already done so, please consider volunteering to help with the Conference. We
are always looking for session chairs, and other on site volunteers to help at the Conference.
Even if you are submitting a paper for the Conference, please consider writing a paper for the
CMG Journal. You can submit your papers, as well as feedback to us at cmgjournal@cmg.org.

Thanks again for reading, and we hope you enjoy this issue.

Stephen R. Guendert, Ph.D

mailto:cmgjournal@cmg.org�

CAPACITY PLANNING CONCEPTS FOR TELECOM SYSTEMS

Tim Sweetz

Bank of America
tim.sweetz@bankofamerica.com

Telecom systems are the primary means of communication between customers and
companies throughout the world. As these systems have evolved over time, the computerized
infrastructure behind modern call centers provide companies with a high level of customization,
but can also lead to complicated and expensive operational processes. One way to reduce
costs associated with telecom technologies is through the discipline of capacity planning. This
paper will present some of the key concepts and basic methodologies required to provide
capacity planning services for telecom systems.

Introduction

Arguably one of the most significant inventions in

our history, the invention of the telephone in the late

1800s truly revolutionized communication methods.

Replacing the well established telegraph

infrastructure was not easy, but the technology of

the telephone was a key enabler in the realm of

communication that allowed for the sophistication

and complexities that exist today. As the technology

has continued to evolve over the years, the

telephone is still a key component in telecom

systems throughout the world.

Telecom systems provide the primary means of

communication between customers and companies.

While there are many aspects and technologies

involved in telecom systems, the focus of this paper

will be on Integrated Voice Response (IVR) systems.

There are many benefits in having an efficient IVR

system; for example:

• Automation of customer-based business

processes

• Decreased call center staffing requirements

• Decreased time required to answer the

customer’s call

• Ability to provide self-service options to

customer’s without having to speak with a

human agent

• Identify and authenticate the caller prior to

human agent taking call to reduce call times

However, an inefficient or unavailable IVR system

can have a very negative impact on a company’s

reputation. Like it or not, many customers associate

the person on the phone with the company, and if

the company will not answer their call, it is going to

hurt the company’s reputation. With this in mind,

many companies rely on vendor recommendations

and overprovision resources to ensure their IVR

system will always be readily available. This is

where the discipline of capacity planning, when

applied appropriately, can be utilized to dramatically

reduce costs and instill a sense of confidence that

there will be enough capacity to accommodate peak

periods in the call center.

Telecom Capacity Planning

Capacity Planning for IVR systems is not

dramatically different than planning for many other

types of systems; however, while many of the

principles and methodologies involved in capacity

planning for other systems remain the same, there

are some significant differences that are typically

only found when capacity planning for a call center

environment. Specifically, the use of the Erlang

Distribution is typically only used when planning for

telecom technologies, although it is sometimes

found in other cases as well.

Erlang Distribution

Capacity planning for telecom technologies utilizes a

queuing theory based on the Erlang Distribution.

The Erlang Distribution was developed in the early

1900s by Agner Krarup Erlang. While working for

the Copenhagen Telephone Company in Denmark,

Erlang developed mathematical formulae to evaluate

the trade-off between low cost/poor service & high

cost/excellent service. His work has been extremely

influential across the globe and remains the basis for

telecom engineering. In 1946, the International

Consultative Committee on Telephones and

Telegraphs (CCITT) adopted the name “erlang” as

the basic unit of telephone traffic.

There are two main formulae for the Erlang

Distribution: Erlang B and Erlang C. Erlang B,

sometimes referred to as the Erlang Loss Formula,

is the most commonly used formula and is designed

to evaluate how many lines, or ports, are required

for a specified amount of traffic. The other formula is

the Erlang C, which allows one to calculate the

probability that a customer will have to wait for a

resource. In addition to these two main formulae,

there is also the Extended Erlang B (sometimes

referred to as Erlang B+), which is very similar to

Erlang B but it assumes that a percentage of calls

are immediately represented to the system if they

encounter blocking.

Erlang

The basis for all Erlang calculations is the erlang.

An erlang is a dimensionless unit of

telecommunications traffic measurement describing

the total traffic volume for a specified timeframe

(typically one hour). Traffic in erlangs (E) is defined

by the following formula:

� �
��

�

• � � Total amount of traf�ic offered in erlangs

• � � Call arrival rate

• � � Average call handling time

• � � Service Rate, or total time

For example, if you received 30 calls in one hour

and each had an average duration of 5 minutes, the

traffic figure would be (30 * 5) / 60 = 2.5 erlang.

Finding the erlang number for your situation is rather

straightforward and is the first step in using the

Erlang formulas.

Erlang B

The Erlang B queuing model is denoted in Kendall

notation as M/M/n/n. In this model, arriving

customers have zero waiting positions. It assumes

Poisson arrivals and exponentially distributed

service times. Since the model does not provide for

any waiting positions, if a customer finds no servers

available, it is assumed the customer goes away

and is lost. For this reason, the model is called a

loss system. The lost customers are also said to

experience blockage or to be blocked.

The Erlang B formula assumes an infinite population

of sources, which jointly offer traffic to N servers.

The rate of arrival of new calls is constant and does

not depend on the number of active sources,

because the total number of sources is assumed to

be infinite. The rate of call departure is equal to the

number of calls in progress divided by the mean call

holding time. The formula was designed to calculate

blocking probability in a loss system and provides

the grade of service (GoS).

"# � $%�,&' �

�&

&!

∑
�*

*!
&
*+,

• -. � Probability of blocking

• 3 � number of resources %servers or circuits'

• � � Total amount of traf�ic offered in erlangs

Extended Erlang B

The Extended Erlang B, also referred to as Erlang

B+, is an iterative calculation rather than a formula.

It adds an extra parameter to the Erlang B formula,

the recall factor, which defines the recall attempts. It

assumes a specified number of calls are

immediately represented to the system if they

encounter blocking (a busy signal).

Erlang C

The Erlang C queuing model is denoted in Kendall

notation as M/M/n/∞, or simply M/M/n. As is the

case with Erlang B, it assumes Poisson arrivals and

exponentially distributed service times. However,

where the Erlang B model has zero waiting

positions, the Erlang C model assumes an infinite

number of waiting positions. Therefore, every

arriving customer will eventually be served, even if

they have to wait a long time. In direct contrast to

the Erlang B model, no customer ever experiences

blockage. However, if the number of erlangs

exceeds the number of servers, then the system

becomes unstable in the sense that the number of

customers grows without limit. Part of the Erlang C

queue definition specifies how waiting customers are

serviced. It assumes a FIFO queuing discipline; the

longest waiting customer will always be the next

customer to begin service.

"4 �

56

6!

6

6 7 5

∑
5*

*!
689
*+, :

56

6!

6

6 7 5

• ; � Total traf�ic offerend in units of erlangs

• < � Number of servers

• -> �

 Probability that a customer has to wait for service

While one can certainly perform the calculations

necessary to obtain the necessary output using the

Erlang formulae, the process can become tedious.

Because of this, the textbooks and tables that were

previously required have been replaced by software

with many Erlang calculators that are now widely

available. Some are free to use and download,

while others charge a nominal fee. There are also

Excel plug-ins and code for C and JavaScript

depending on your preferences. Any of these

options make using the Erlang formulae quick and

easy and are rather easy to find using your search

engine of choice.

Other Key Components for Telecom Capacity

Planning

Now that we have detailed some of the basic

concepts related to erlangs and the Erlang formulas,

we need to briefly touch on the other key

components involved in Telecom Capacity Planning:

call volume and average handle time (AHT).

When dealing with call volumes, it is important to

remember that calls have a tendency to bunch up.

Because of this, all capacity planning efforts related

to telecom traffic need to focus on peak periods.

The industry norm is to deal with the peak hour.

There are two primary options to choose from when

attempting to determine the peak busy hour traffic.

One method is to take the busiest hour from the past

13 months (if that amount of data is available) and

use that as the peak. The other would be to take the

busiest hour of each day for five or ten days during

the busiest time of the year, and then calculate the

average of those hours’ traffic load to derive the

average busy hour. This decision can be driven by

business requirements, but in my experience it is

best to go with the actual peak hour. Averaging

peak values just has the potential to water down the

peak to a point that can leave you susceptible to

unavailability during a true peak period.

The other key input that we need for telecom

capacity planning is the AHT. Simply stated, AHT is

a telecom metric for the average duration of one

transaction. AHT is typically measured from the

caller’s initiation of the call and including any hold

time, talk time, and related tasks. AHT is required to

determine the number of erlangs which is a key

input into the Erlang formulae.

Putting it all together

Now that we have an understanding of these key

concepts, we will bring it all together with some

hypothetical examples. Using a typical telecom

environment, we have IVR servers located in three

data centers. Each data center has 14 servers, and

each server has 192 physical ports available.

Accounting for disaster recovery, our SLA states we

must be able to handle the peak workload across

any two data centers at any time (N-1). We have

accumulated call volume data for the previous 6

months, and we have obtained the peak hourly call

volume and the AHT. In addition, we have compiled

the busy hour concurrent port (BHCP) usage at the

server level. In the absence of specific call volume

projections, the business is providing a BAU growth

projection of 3% per month. This information is

summarized below and can be used to build a

simple linear capacity model to visually represent the

capacity forecast for the next 12 months.

Month BHCP Peak Call Volume AHT Erlang

July 2010 2434 62,450 / hour 132 seconds 2290

August 2010 2048 52,231 / hour 132 seconds 1915

September 2010 2282 58,876 / hour 131 seconds 2142

October 2010 2420 61,175 / hour 134 seconds 2277

November 2010 2461 65,225 / hour 134 seconds 2316

December 2010 2384 60,673 / hour 133 seconds 2242

AVERAGE 2338 59,605 / hour 133 seconds 2197

PEAK 2461 65,225 / hour 134 seconds 2316

Table 1 – Historical Call Data

Site # of Servers Total # of Ports

Data Center 1 14 2688

Data Center 2 14 2688

Data Center 3 14 2688

TOTAL 42 8064

TOTAL (N-1) 28 5376

Table 2 – Infrastructure Data Used in Example

Figure 1 – Example Capacity Forecast Chart

As seen in Figure 1, the company has been

underutilizing the available hardware and ports.

Over the past six months, the peak port usage is

46% of their N-1 capacity threshold of 5,376 ports.

However, given the aggressive growth projection of

3% per month, the forecast by the end of the year is

3,242 ports, or 60% of their N-1 capacity. Given this

level of utilization, there would be an opportunity to

cut costs by reducing the number of servers and

ports in their environment. The following graph

shows what the company’s IVR system’s capacity

would look like if we released two servers from each

data center (6 total servers):

0

1000

2000

3000

4000

5000

6000

7000

8000

J
u

l-
1
0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o
v
-1

0

D
ec

-1
0

J
a
n

-1
1

F
eb

-1
1

M
a
r-

1
1

A
p

r-
1
1

M
a
y
-1

1

J
u

n
-1

1

J
u

l-
1
1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o
v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Projected BAU Port Consumption Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 5,376 ports

Installed Capacity: 8,064 ports

Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

Figure 2 – Capacity Forecast Chart Showing Reduction in Capacity

As seen in Figure 2, even after removing these 6

servers from the environment, the company would

maintain sufficient capacity through the end of the

year. Given the forecast of 3,242 ports in December

2011, the company would be using 70% of their N-1

capacity while still maintaining a nice buffer of 30%.

Releasing 6 servers and 1,152 ports would present

a significant cost savings while still maintaining a

high level of service and confidence in the capacity

of the environment.

Practical Examples

Another key application of these telecom capacity

concepts involves analyzing changes in either call

volume or AHT, typically associated with a project or

marketing campaign. Several scenarios are

presented below:

• A new marketing campaign slated for May 2011

in which the business anticipates a 20%

increase in call volume and no change in AHT

• A significant change in product slated for July

2011 in which the business anticipates a 10%

increase in call volume and an increase in AHT

by 10 seconds

• A code release expected to improve efficiency of

the IVR system slated for September 2011 in

which the business anticipates no change in call

volume but a decrease in AHT by 15 seconds

Scenario 1

For the first scenario, in which we anticipate a 20%

increase in call volume and no change in AHT, we

would utilize the Erlang B formula to determine the

number of ports required for this increased

workload. The steps are detailed next:

1) Use the peak hour call volume (65,225) to

calculate the new peak with the additional 20%:

65,225 * 1.2 = 78,270

2) Find the number of Erlangs for the increased call

volume (using same AHT of 134): (78270 *

134)/3600 = 2913 erlangs

3) Next, find the number of ports required to

support this increased workload (using an

Erlang B calculator): 3,073 ports required

4) Find the difference between the new projected

peak and the current actual peak: 3073 – 2461 =

612 ports

Given the projections in this scenario, the IVR

system would need an additional 612 ports to

support the marketing campaign. We can plug this

number back into our capacity forecast model to

determine if this will push us over our thresholds or if

we will have sufficient capacity to accommodate this

additional volume. As seen in Figure 3, the increase

in call volume would obviously increase our usage,

but we would still be well within our capacity

thresholds.

0

1000

2000

3000

4000

5000

6000

7000

8000
J

u
l-

1
0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o

v
-1

0

D
ec

-1
0

J
a

n
-1

1

F
eb

-1
1

M
a

r-
1

1

A
p

r-
1

1

M
a

y
-1

1

J
u

n
-1

1

J
u

l-
1

1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o

v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Projected BAU Port Consumption Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 4,608 ports

Installed Capacity: 6,912 ports
Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

Figure 3 – Capacity Forecast Chart Showing Impact from Scenario 1

Scenario 2

For the second scenario, in which we anticipate a

10% increase in call volume and a 10 second

increase in AHT, we would also utilize the Erlang B

formula to determine the number of ports required

for this increased workload. The steps are detailed

next:

1) Use the peak hour call volume (65,225) to

calculate the new peak with the additional 10%:

65,225 * 1.1 = 71,748

2) Find the number of Erlangs given the increase in

call volume and AHT: (71748 * 144)/3600 =

2870 erlangs

3) Next, find the number of ports required to

support this increased workload (using an

Erlang B calculator): 3,029 ports required

4) Find the difference between the new projected

peak and the current actual peak: 3029 – 2461 =

568 ports

Given the projections in this scenario, the IVR

system would need an additional 568 ports to

support the expected workload changes due to the

change in product. We can then plug this number

back into our capacity forecast model to determine if

this will push us over our thresholds or if we will

have sufficient capacity to accommodate this

additional volume. As seen in Figure 4, the increase

in call volume would increase our usage, but we

would still be well within our capacity thresholds.

0

1000

2000

3000

4000

5000

6000

7000

8000
J

u
l-

1
0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o

v
-1

0

D
ec

-1
0

J
a

n
-1

1

F
eb

-1
1

M
a

r-
1

1

A
p

r-
1

1

M
a

y
-1

1

J
u

n
-1

1

J
u

l-
1

1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o

v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Projected BAU Port Consumption Scenario 1 Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 4,608 ports

Installed Capacity: 6,912 ports
Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

Figure 4 – Capacity Forecast Chart Showing Impact from Scenario 2

Finally, for the final scenario in which we anticipate

no change in call volume but a 15 second decrease

in AHT, we would also utilize the Erlang B formula to

determine the number of ports required for this

decreased workload. The steps are detailed next:

1) Use the existing peak hour call volume: 65,225

2) Find the # of Erlangs given the decrease in AHT:

(65225 * 119)/3600 = 2156 erlangs

3) Next, find the number of ports based on this

decreased workload (using an Erlang B

calculator): 2,296 ports required

4) Find the difference between the new projected

peak and the current actual peak: 2296 – 2461 =

-165 ports

Given the projections in this scenario, the IVR

system would see a decrease of 165 ports as a

result of the expected decrease in AHT due to the

efficiencies gained from the code changes. We can

then plug this number back into our capacity

forecast model to adjust our forecast accordingly.

As seen in Figure 5, the impact is not as significant

as the first two scenarios, but the decrease is

observed.

0

1000

2000

3000

4000

5000

6000

7000

8000
J

u
l-

1
0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o

v
-1

0

D
ec

-1
0

J
a

n
-1

1

F
eb

-1
1

M
a

r-
1

1

A
p

r-
1

1

M
a

y
-1

1

J
u

n
-1

1

J
u

l-
1

1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o

v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Projected BAU Port Consumption Scenario 2 Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 4,608 ports

Installed Capacity: 6,912 ports
Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

Figure 5 – Capacity Forecast Chart Showing Impact from Scenario 3

Combining the Scenarios

The real benefit to modeling impact from various

scenarios is when multiple changes are planned and

you need to determine what your capacity will look

like when they are all combined. This holistic view is

critical to ensuring you provide a telecom

environment that has adequate capacity. The three

scenarios are now shown together in Figure 6.

Figure 6 – Capacity Forecast Chart Showing Impact from all Three Scenarios

0

1000

2000

3000

4000

5000

6000

7000

8000
J

u
l-

1
0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o

v
-1

0

D
ec

-1
0

J
a

n
-1

1

F
eb

-1
1

M
a

r-
1

1

A
p

r-
1

1

M
a

y
-1

1

J
u

n
-1

1

J
u

l-
1

1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o

v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Scenario 3 Projected BAU Port Consumption Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 4,608 ports

Installed Capacity: 6,912 ports
Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

0

1000

2000

3000

4000

5000

6000

7000

8000

J
u

l-
1

0

A
u

g
-1

0

S
ep

-1
0

O
ct

-1
0

N
o

v
-1

0

D
ec

-1
0

J
a

n
-1

1

F
eb

-1
1

M
a

r-
1

1

A
p

r-
1

1

M
a

y
-1

1

J
u

n
-1

1

J
u

l-
1

1

A
u

g
-1

1

S
ep

-1
1

O
ct

-1
1

N
o

v
-1

1

D
ec

-1
1

#
 o

f
P

o
rt

s

Company XYZ IVR Capacity Forecast

Projected BAU Port Consumption Scenario 3 Scenario 2 Scenario 1 Installed Capacity Current Capacity Consumption N-1 Capacity

Headroom

Available (N-1) Capacity: 4,608 ports

Installed Capacity: 6,912 ports
Peak usage observed
November 2010 (2,461
BHCP / 65,225 calls)

As seen in Figure 6, the impacts from all three

scenarios combined bring us closer to our N-1

threshold, but we still forecast sufficient capacity.

The third scenario, while not looking as significant by

itself, really helps bring the forecast down when

taking all three scenarios into account. Without the

decrease gained from scenario 3, we would be right

at our N-1 threshold and most likely looking at

adding capacity to provide more breathing room.

Conclusion

Capacity planning for telecom systems involves

some unique concepts not found in other disciplines

of capacity planning. In order to provide capacity

planning services for telecom systems, one should

work to develop an understanding of these

concepts. This paper has provided an overview of

erlangs and the Erlang formulas, as well as

discussing some other key inputs involved in

telecom capacity such as call volume and average

handle time. With an understanding of these

concepts, the remaining steps to develop a telecom

capacity plan follow standard capacity planning

methodologies. Collecting good data in terms of

your call volumes and average handle times will be

critical in developing a quality capacity plan for your

telecom systems.

References

[ABST08] “About Queuing Models” Abstract Micro

June 2, 2011:

<http://abstractmicro.com/erlang/helppages/mod-

about.htm#kendall>.

[ABST08] “Erlang B Queuing Model” Abstract Micro

June 2, 2011:

<http://abstractmicro.com/erlang/helppages/mod-

b.htm>.

[ABST08] “Erlang C Queuing Model” Abstract Micro

June 2, 2011:

<http://abstractmicro.com/erlang/helppages/mod-

c.htm>.

[ANGU01] Angus, Ian, “An Introduction to Erlang B

and Erlang C,” Telemanagement #187 (July-August

2001).

[EVEN11] “Resource Dimensioning Using Erlang-B

and Erlang-C,” Event Helix June 6, 2011:

http://www.eventhelix.com/RealtimeMantra/Congesti

onControl/resource_dimensioning_erlang_b_c.htm>.

[SHAM09] “Using the Erlang Equation” Shamrock

Software June 6, 2011: <http://www.shamrock-

software.eu/erlang.htm>.

[WEST11] “What is an Erlang,” Westbay Engineers

Limited June 3, 2011:

<http://www.erlang.com/whatis.html>.

Why Models Fail—A Case Study:
A Workload Analysis Model

Tom Wilson

What does it mean for a model to fail? It means that the model failed to
provide the insight that it was meant to provide. A model starts with an objective,
has a design and implementation, and then is put to use. This case study examines
a workload analysis model, from which a performance test model is derived, and
discusses why the model failed.

1 Introduction

Models come in various forms, but their common purpose is to increase our understanding of the things being modeled.
Models give us the ability to be proactive concerning problems. Models are not necessary since we can move forward in
ignorance and react to problems as they are encountered. As silly as this perspective sounds, it is too common. However,
what may be worse than doing nothing is creating an ineffective model.

So, what does it mean for a model to fail? It means that the model failed to provide the insight that it was meant to
provide. This probably means that there was something wrong with the design, implementation, or use of the model (we
will assume that at least we got the objective right). A model’s design incorporates its goal or intent. This is sometimes
where the design will go wrong. The implementation concerns the details of how the model accomplishes its goal. Errors
in the model can render it useless. A model’s use includes the data put into the model. Bad inputs result in bad outputs.
This is common point of failure for a complex model.

This paper will describe a real model and then discuss where it fell short of its objective. The sections containing the
model’s details may be skimmed (Sections 2 and 5) or skipped (Sections 3 and 4) and later referenced after reading the
conclusions (Section 6).

2 Model Objective

An existing proprietary transaction system supports logistics and maintenance of military equipment. A new system is
being designed to provide more functionality and storage and serve a larger user base. A Service Level Agreement (SLA)
will be used during operations to determine payments to the contractor by the customer. The existing system also has an
SLA governing operations, although it differs from the new system’s SLA in a few unimportant aspects.

A performance test model will be used to evaluate the new system against the SLA since the SLA is the only guidance
for developing the system. The performance testing will help management assess the performance risks associated with
the new system before it enters into production. The performance test model requires a workload upon which to base its
assessment. So, it is important that the performance test model have an accurate workload. A performance test model
should account for:

• the frequency of the functionality in the workload

• the timing of the workload

• the data being operated on by the workload

The frequency of the functionality specifies which functionality is executed and how often. Note that not all functionality
needs to be executed in a performance test. The timing of the workload directly impacts the load on the system. In an
interactive system, think times separate the activities performed by the users. Think times dictate throughput and are not
accounted for in this workload analysis. [Wil10a] describes think times and other user analyses.

Determining the data being operated on is a complex analysis. That analysis is influenced by roles that the user can
take on as well as privileges that he has. Some users have access to more data than other users, but that does not mean
that such users access all of the data that they can. This aspect of the workload model was not addressed by the WAM
since there was no simple way to mine such data from the existing system. [Wil11a] describes some of the issues concerning
workload data.

Functionality is described by means of a Business Process (BP). A BP details the actions that the user takes when
using the system. Here, a BP is synonymous with an engineering use case. A BP can have many paths of execution
based on choices and/or parameter settings, such as permissions. The Workload Analysis Model (WAM) defines the BP
workload for the performance test model. What the WAM needs to produce is a list of frequencies for the BPs.

3 Model Design

Conceptually, the WAM design is fairly simple. The new BPs are divided into groups of new and existing functionality.
Existing functionality is determined by an association with a BP in the existing system (termed “old BPs”). Frequencies
for old BPs are determined by analysis of production data. Frequencies for new BPs with new functionality are estimated
based on comparison with new BPs with existing functionality. The two groups are then combined to produce the workload
specification. Figure 1 illustrates the WAM.

New

Functionality

Existing

Functionality

Estimate

Frequencies

Compute

Frequencies

Workload

Specification

New System

Business

Processes

Old System

Business

Processes

Production

Data

Filter

Data

Figure 1: This figure illustrates how the WAM is constructed. The green boxes indicate tasks involving new functionality,
while blue boxes indicate tasks involving existing functionality.

In practice, several of these steps are difficult. We want BP frequencies for the new system but only have transaction
data from the existing system. Transactions are associated with a resource1 within the software. This association turns out
to be many-to-many. The resources are associated with screens. This association is also many-to-many. Finally, screens
are associated with the BPs; again, this is a many-to-many association. Figure 2 illustrates the mapping concept. This
mapping allows us to produce frequencies for the new system BPs as long as it has corresponding old system BPs.

Since the old system is complete, one would think that all of the desired information would be available. Unfortunately,
this is not true. Most of the relationships are not documented and were derived by design and development Subject Matter
Experts (SMEs).

4 Model Implementation

The WAM is implemented as an Excel spreadsheet, which is a collection of worksheets. The implementation is presented
by describing the worksheets. One worksheet contains the few user-specified parameters that there are to the WAM. One
specifies the number of users in the performance model. This parameter determines the number of each script that should

1Unfortunately, I cannot find an adequate description for this term.

New System BP i Old System BP 2

Old System BP 1

Old System BP j

Screen Name 2

Screen Name 1

Screen Name k

Resource 2

Resource 1

Resource m

Transaction 2

Transaction 1

Transaction n

Figure 2: This figure illustrates the difficult task of mapping transactions to the business processes of each system.

be run. Another parameter determines the percentage of old functionality in the new system. This is used on the BP
summary worksheet (described in Section 4.4). The remaining worksheets are described in the subsequent subsections.

4.1 Production Data Worksheet

The production data worksheet contains pairs of resources and transactions and their counts obtained by mining
production data. A filtering process is applied to the data so as to eliminate transactions that do not contribute to the
computation of BP frequencies. Figure 3 shows the filtering process.

Prod.

Data

Peak

Trans.

Filter
Interim

Data 1

Interim

Data 2

Filtered

Data

Overlap

Trans.

Filter

Nav. &

Error

Filter

Figure 3: This figure illustrates the transaction filtering process.

The first filtering operation removes all data that do not fall within the interval of interest. The interval of interest is
defined as the time periods where high user-counts (called “peak-transaction-hour data”)exist. We will not bother detailing
the periods any further because other analysis shows that the frequency of functionality is roughly the same across all time
periods (refer to [Wil10b]). Nonetheless, transactions outside the high-user-count time periods were discarded.

Two filtering operations are applied to the peak transaction hour data in order to eliminate some anomalies that inflate
the activity frequencies. The first concerns overlapping or nearly overlapping transactions. If an activity outputs more
than one transaction, we do not want to count all the transactions toward the frequency of the activity. There are other
times that multiple transactions can be output. In the case of a slow response, the user may submit the transaction again.
This is not normal behavior and should not influence the frequency of the activity. There can also be occasions where
two transactions do not overlap, but are so close together that they are not likely to be different actions by the user. A
one-second threshold was used to define transactions that are nearly overlapping.

For the remaining data, other transactions are removed if they are considered not to be indicative of the functionality.
Examples include navigational transactions and error-related transactions. In the former case, a user may move from one
screen to another. In the production data, the transaction generated is associated with the screen being left. This is not
a true usage of the screen’s functionality. In the latter case, transactions can be generated that give error messages back
to the user. This is not representative of what the user is trying to accomplish.

A list of transactions is the output of the mining and filtering process. Over 1 million transactions remained after the
filtering process. Associated with each transaction is a resource. The production data worksheet has pairs of resources
and transactions with associated counts.

4.2 Resource Frequency Worksheet

The resource frequency worksheet allows a resource remapping to occur before the final frequency is computed from
the production data. In a small number of cases, a resource and its group of transactions were not indicative of the activity
on a screen. A mapping step allows a resource to be given an alternate name and assigned a subset of its transactions.
Only a small number of resources required this mapping. All others were mapped to the same resource name. Table 1
shows an excerpt of the worksheet.

Table 1: Resource/Transaction Counts and Frequencies (Excerpt)

Resource
Alt. Orig. Transactions Count Freq.

2 2 105 873 0.08%
3 3 105, 110 54,023 4.88%
4 4 105 331 0.03%
6 6 105 10 0.00%
7 7 3 499 0.05%
8 8 5, 92, 94-96, 105 1,059 0.10%

9a 9 132 0 0.00%
9b 9 142 0 0.00%
9c 9 105, 120, 140 1,402 0.13%

Resource 9 has 5 transactions associated with it. Two of these transactions indicated different functionality than
the other three. In this particular case, the count for each of those transactions is 0. This is because the transactions
occurred in production, but during time periods which were filtered out. So, why bother splitting the resource? Because
the transactions occurred with other resources which were also split. So, some transactions caused resources to be split
regardless of the counts for the transactions.

The list of alternate resources has a list of transactions associated with it. From these transactions, a frequency can
be computed for the resource. These resources and frequencies are then used on the BP mapping worksheet (discussed
in Section 4.3). There were originally 118 named resources and 165 named transactions. After splitting resources, there
were 131.

4.3 BP Mapping Worksheet

The BP mapping worksheet consists of a list of new system BPs with zero or more old system BPs mapped to it. Each
old system BP has a list of zero or more screen names associated with it. The reason why there could be zero screen
names is because these lists were reverse engineered from the production data. The complete list of old BPs was created
from engineering documentation; the lists of screen names were derived from the reverse mappings of transactions and
resources (which occurred during operations) to screens. So, if a screen was never visited, it does not appear.

Table 2 shows an excerpt of the worksheet that captures these mappings. Because of the many-to-many mappings, a
resource, a screen, or old BP can occur several times. Examples are resource 49, screen 45, and BP 06.15. This makes
numerous rows in the worksheet. The resource frequencies, which are computed on the resource frequency worksheet,
and are evenly distributed across all occurrences (introducing error since the distribution is probably not uniform). For
example, resource 49 occurs two times in the actual spreadsheet. Its frequency of 2.32% is distributed evenly across the
associated screens. The frequency of any new BP is simply the sum of all of the relevant rows.

Table 2: Business Process Frequencies Mapping (Excerpt)

New System Old System
BP Freq. BP Screen Res. Freq.

001.1.a 3.00% 06.01 45 49 1.16%
06.02 45 49 1.16%
06.07 45 - 0.00%
06.15 46 50 0.33%
06.16 46 50 0.33%

74 88 0.02%
001.1.b 0.78% 06.03 07 08 0.03%

06.04 07 08 0.03%
06.05 07 08 0.03%

68 85 0.01%
06.08 07 - 0.00%
06.15 46 50 0.33%
06.16 46 50 0.33%

74 88 0.02%

4.4 BP Summary Worksheet

The BP summary worksheet lists all BPs and computes their final frequencies. Table 3 shows an excerpt of the
worksheet. Each BP is defined as new, old, or both (only one BP is marked as both). For those marked as old, frequencies
come from the BP mapping worksheet. New frequencies are estimated and are manually entered on this worksheet.

Table 3: Final New System BP Frequencies (Excerpt)

Func. Comb. New Old
BP Type Freq. Freq. Freq.

001.1.a Old 1.20% 0.00% 3.00%
001.1.b Old 0.31% 0.00% 0.78%
001.1.c Old 0.00% 0.00% 0.00%
001.1.d Old 0.32% 0.00% 0.79%
001.1.e New 0.06% 0.10% 0.00%
001.1.f Old 0.27% 0.00% 0.68%
001.2.a New 0.94% 1.56% 0.00%
001.2.b Old 2.78% 0.00% 6.95%
001.2.c New 0.44% 0.73% 0.00%
001.2.d Old 0.05% 0.00% 0.11%
001.2.e New 0.44% 0.73% 0.00%

A manual process was used to estimate the frequencies of the new functionality. First, all of the BPs with existing
functionality were assigned to groups with the following frequency ranges: 0%, 0-1%, 1-5%, 5-10%, 10-15%, and ≥15%.
Then a SME that was knowledgeable in both systems assigned BPs with new functionality to the groups based upon
similarity to the BPs already present in the range.

Initially, the frequency for each BP with new functionality was assigned the midpoint value of its range (no BP was
assigned to the “≥15%” range). The resulting values were then normalized. These final values are manually entered on
this worksheet.

Finally, the new and existing functionality are combined by scaling their associated frequencies. The same SME provided
a guess as to the frequencies of new and old functionality. That guess was 60% and 40%. So, the combined frequencies
are the result of scaling the new and old frequencies by the appropriate value.

5 Model Usage

Using the model requires it to be populated with data. Most of the data came from mining production data. Relation-
ships between transaction, screens, and BPs came from source code and SME knowledge. These take the form of data
in the spreadsheet. Other data came from SME estimates. Finally, the number of users is entered, and the spreadsheet
computes the number of each BP to have in the workload.

When scripts were being recorded, it was realized that many BPs (e.g., searching for equipment) were necessary to
execute other BPs. The WAM was computing the frequency of BPs but not the frequency of the scripts (the fact that
scripts were named after BPs was a point of confusion).

In an attempt to correct this, a new worksheet was added that captured what BPs occurred in each script so that the
frequencies of the scripts could be adjusted to improve the frequencies of the BPs. The population of the worksheet was
not supported due to schedule pressures and the WAM’s BP frequencies were used for the script frequencies. The result
was an inaccurate workload.

6 Conclusions

The problem with the WAM was that it was outputting BP frequencies rather than script frequencies. In some cases,
a script and BP were equivalent. However, in many cases, a script contained two or more BPs. Some BPs occurred in
several scripts. In the end, frequencies for the BPs in the collection of scripts did not match the WAM frequencies.

The WAM could have been less complicated. First, some concept of scripts needed to be defined in the old system.
This would mean identifying sequences of BPs that would make up those scripts. Such scripts would need a counterpart
in the new system. Then frequencies for the old system scripts would be derived from transaction information. Additional

scripts would be defined for new functionality with associated frequencies. The result would be a more accurate workload.
The biggest challenge would be computing the frequencies for the old system scripts based upon sequences of BPs.

Also, not all functionality needed to be considered for a performance test. This would not only remove some of the
data that was mined, but also reduce the number of scripts that had to be developed and maintained (because the software
was still be developed).

This modeled failed because of misalignment of the types of workload. Transaction workload was gathered from the
existing system, yet BPs were modeled in the performance test. The model also attempted to cover too much functionality
and had too low a level of detail.

7 Series Summary

This series provided examples of why models can fail to achieve their goals. In [Wil11c], the model lacked data. No
input means no output. No output means that the model has no use in spite of its detail and potential. The source of
most of the needed data was the customer. Gathering these data was not a priority in the project.

In [Wil11b], lack of data was also an issue. However, in this case data were needed from both the customer and the
contractor. For the contractor, most of the missing data was related to incompleteness of the design or the absence of
tests to gather measurements. Again, gathering these data was not a priority in the project.

In this paper, the design was flawed. Most aspects of the model’s design and implementation are correct, but the
misalignment of the types of workload results in bad data in the model. Unfortunately, no analysis was performed to
compare the performance test’s workload with the actual production workload after the system was deployed.

Finally, we will say that we should probably not judge the models using a pass-fail assessment. No model is perfect, so
we must allow some amount of error. However, even that perspective is very subjective. In all cases, the various phases
of the model development allowed things to be learned about the system under development. But, if that alone were the
goal, the effort could be better focused. Nonetheless, the models could have been much more useful.

References

[Wil10a] Tom Wilson. “Data Mining User Behavior”. CMG MeasureIT, September 2010.

[Wil10b] Tom Wilson. “Workload Correlation and Visualization”. Proceedings of the CMG 2010 International Conference,
December 2010. Reprinted in CMG MeasureIT, Issue 5, 2011.

[Wil11a] Tom Wilson. “Developing Toward an SLA: Understanding Data Complexity”. CMG MeasureIT, Issue 3, 2011.

[Wil11b] Tom Wilson. “Why Models Fail–A Case Study: A Multi-year OLTP and OLAP Database Storage Capacity
Model”. Journal of Computer Resource Management, Issue 129:13–19, 2011.

[Wil11c] Tom Wilson. “Why Models Fail–A Case Study: A Transaction Synchronization Model for Computing Removable
Media Capacity”. Journal of Computer Resource Management, Issue 128:18–29, Winter 2011.

An Effective Implementation of CMMI for Performance Testing Projects – a
Case Study

Nidhi Tiwari, Infosys Technologies Ltd., nidhi_tiwari@infosys.com

Veena Rajendiran , veena.rajendiran@gmail.com

Today performance testing is well recognized, widely practiced and sufficiently equipped
with tools. However, little emphasis is given to process implementation, tracking and
improvement of performance testing projects, resulting in exponentially high Cost of
Quality (COQ). Here we share our experience of implementing CMMI for performance
testing projects to control their COQ. Subsequent benefits obtained by organizations are
also included.

Introduction

Today performance of software systems in terms of
throughput, responsiveness etc is becoming critical for
various businesses. Its awareness has in turn boosted the
performance testing technology [1]. Consequently, a
plethora of integrated suites of products like Mercury’s
LoadRunner, Radview WebLoad etc are available to
verify the performance of business-critical applications.
However, it is observed that performance testing projects
run over schedule and budget, with much chaos and
ambiguity. A key reason for this is a lack of identification
and conformation to well-defined processes for
performance testing.

Ad-hoc execution of projects results in schedule and
budget slippages. Their people centric execution makes
their success dependent on individual’s skill level and
experience. Defining a work process for performance
testing would allow streamlining the activities and make
them person independent to some extent. Further
implementation of the Capability Maturity Model
Integration (CMMI) framework would instill continuous
process improvement and help sustain the quality of
products i.e. system performance [2].

In this paper we use a case study to highlight some of the
practical issues experienced during performance testing
projects in the absence of any formal process. We
illustrate a process and CMMI framework implementation
for this organization and show the COQ improvement
through various levels.

The paper is structured as follows: Section 1 sets context
of the case study used in this paper, section 2 provides a
brief overview of CMMI framework, section 3 describes
implementation of CMMI for performance testing
projects, and section 4 lists the benefits achieved by using
CMMI and section 5 presents summary and conclusion
for the paper.

1. Case Study

A manufacturing client was facing numerous issues in
performance testing projects such as frequent schedule
slippages, errors slippages to production etc. Due to these
issues, their downtimes and rework costs of code and
testing were increasing, so they wanted to minimize
performance related issues and risks in production while
meeting tight delivery timelines. The client engaged us to
provide high quality and efficient performance testing.

To understand the client performance testing
methodology, brain storming sessions were done with the
client team, available documents / reports were studied
and joint tests were conducted. Subsequently, the
following root causes were identified for their
aforementioned problems:

• Lack of common definition and/or understanding of

performance testing terminologies in the
organization.

• Lack of standard process, templates and checklists
available for performance testing.

• Unavailability of estimation models for
performance testing

• Lack of a knowledge sharing process in place.
• Lack of a validity process for COTS acquisition
• Dependency of performance tests on individual’s

experiences.

After analysis and discussion, it was decided that the
client’s ad-hoc performance testing mechanisms need to
be streamlined using a comprehensive and progressing
framework. For doing so a work group of subject matter
experts (SMEs) was formalized consisting of people from
the performance engineering research group, performance
testing practitioners group and process consultants. This
group decided on using the CMMI framework based on
dynamics involved in performance testing. Here we
describe the progress of client processes through various
CMMI maturity levels.

2. CMMI overview
CMM Integration (CMMI) model provides a set of
guidelines for evaluating and improving an organization's

mailto:nidhi_tiwari@infosys.com�

software development processes [3]. As it has
successfully helped a large number of IT organizations in
streamlining their software development activities, CMMI
guidelines were adopted to improve the performance
testing process.

As shown in Figure 1, the CMMI® model is a method for
organizing evolutionary steps into five levels of maturity
that lay successive foundations to support process
improvement. Processes at level 1 are very unpredictable
and have great variability, while those at level 5 are highly
predictable and continuous.

Figure 1: The SEI CMMI framework

As CMMI is a non-prescriptive model, we have extended
it suitably for performance testing projects. We describe
our experience of mapping CMMI practices to
performance testing.

3. CMMI implementation for Performance

Testing projects
For performance testing projects following Key Process
Areas (KPAs) at various levels were identified for CMMI
implementation [4]:

Figure 2: KPAs for CMMI model

4.1. Level 1

Initially the cost and schedule were a high priority for the
project manager. So the performance testing team’s job
was completely directed to report the test results quickly.
There was no clarity about objectives, success criteria,
process etc for test execution. Test scripts were recorded
and executed in an ad-hoc manner as requests came in
from the client for different applications/transactions.
There was a lot of dependency on COTS (Commercial
Off-Shelf Tools, i.e. third party tools like Webload,
LoadRunner etc) for reporting, without any focus on
building expertise in the field. These COTS were often
used without much diligent background work, based on
their cost and availability.

Though cost was given highest priority, no measures other
than these quick fixes were adopted. Estimation was not
based on any formal process. Project activities did not
include any specific performance measurement and
tracking related efforts, quality attributes were getting
ignored for cost and schedule. Subsequently high
appraisal, prevention and failure costs were occurring
which contributed to increasing COQ for project. The
COQ was touching 44% as shown in COQ graph in figure
5, which ideally must not be higher than 20%. To control
this as a first step CMMI level 2 was introduced.

4.2. Level 2
CMMI level 2 maturity is about inculcating discipline in
project execution. This level initiates the shift from
individual dependence to leadership of a manager. For
realizing level 2 KPAs a performance testing process was
required. Multiple rounds of brainstorming sessions of the
work group along with client managers were done to
define the performance testing process.

Performance Testing Process
The Performance Testing Life Cycle (PTLC) process was
defined based on a classic waterfall model to guide,
monitor and control performance testing projects [5]. It
consisted of multiple phases with detailed activities,
entry/exit criteria, templates and guidelines to streamline
requirements management, measurement and analysis
tasks for performance testing. The PTLC process is
described in figure 3.

Figure 3: Performance Testing Life Cycle (PTLC)

A project management plan was prepared by the project
manager based on the performance testing process and
group reviewed by the work group. A PTLC phase wide
effort estimation model was prepared based on the
experience of the manager as similar project data was
initially not available. A detailed project execution
schedule was prepared and tracked by the project
manager. These steps enforced a shift in project
management priorities. Emphasis on size increased as
compared to level 1 resulting in usage of better estimation
techniques, which led to better planning and tracking
activities.

For ensuring performance tests quality and tracking met
stated requirements, relevant performance metrics were
monitored and reported from the system performance
tests. Some of the metrics monitored were:

1. Utilization (CPU, Disk, Memory, Network)
2. Throughput
3. Response Time
4. User Load

For instance the reporting of response time versus user
load graph helped in confirming the load level till which
the SLA requirements were made. A sample graph of
monitored response time versus the user load for various
transactions from a COTS tool is shown below in figure 4.

Figure 4: Response Time vs User Load graph

The process helped to clearly define purpose, activities
and outputs expected from COTs which made COTs
selection more streamlined. Cost of COTs tailoring like
parameters initialized, complexity of script writing,
security/access requirements, were also factored in for
their acquisition.

At this level along with test metrics, a process metrics
culture was also inculcated. Metrics were defined to
measure the operational goals, quality of deliverables and
productivity of the team. Some of the metrics that excited
upper management are listed below:

• Schedule Adherence
• Effort Variation
• Cost Of Quality

Quality check points were defined at the end of each
project phase to monitor the project performance. Defect
prevention activities based on the Pareto principle were
started and their effectiveness was monitored by means of
sub process goals such as:

• Defect Injection Rate in test data, scripts, scenarios

etc.
• Review Effectiveness of test plans, scripts etc.

At this juncture there was visibility into the progress of
achieving product and process goals as multiple metrics
were captured. After one full cycle, some process
capability baseline values were available for other projects
in the client pipeline. For the next cycle of projects, goals
were laid down based on this data. The quality and
predictability were still not considered to be crucial for
project success.

4.3. Level 3
CMMI level 3 emphasizes on standardization of processes
across the organization. To achieve it, the performance
testing process and standards were institutionalized across
client’s testing teams. Training sessions were conducted
to evangelize and enable people org wide with process
implementation. This helped in effective adoption of
processes by testing teams. In conjunction with different
client project managers, working group established
guidelines for the extent to which customization to the
standard process were allowed for particular
applications/projects.

Further emphasis on process engineering activities was
drawn by making the related verification and validation
activities an essential part of the process. The following
verification activities were made mandatory: verifying test
data for script parameterization, verification of test
scenarios against the test strategy for evaluating the
performance requirements correctly, checking that the
load generated is as decided in the strategy, and the test
report was reviewed for the monitored test results and
graphs and so on. Compulsory validation activities
included: validating the test environment by executing a
sample test script using the load testing tool, executing the
smoke tests for validating the test scripts etc.

The performance test results were analyzed to find the
performance gaps and suggest the best technical solutions.
Based on cost, risks, effectiveness and time analysis, best
solutions were agreed upon for implementation with
development team. Knowledge sharing activities like
preparation of a book of knowledge (BOK) were kick
started for reuse.

At this level, meeting customer requirements of quality
and speedy delivery took precedence over cost and size
for the project manager.

4.4. Level 4
At maturity level 4 the projects become more predictable
as previous projects execution metrics provide a baseline
and processes are in place to track them for adherence. In
this case, use of standard reporting templates for capturing
performance metrics during a few testing cycles provided
an opportunity to provide performance’s predictions in
subsequent cycles. For doing so some additional
performance engineering activities including scalability
analysis, performance modeling and what-if analysis were
conducted [6]. CPU utilization versus user load graph
analysis was used to find if the application can scale up
with the increasing user load. If an application is found to
be scalable then its more predictable as throwing more
hardware would allow it handle increase in load.
Additionally performance models were created using test
results and what-if analysis was done to predict the
application performance for future user loads. SLA’s were
monitored and stored for future reference, which helped to
individually predict the response time of the various
applications under test and also to predict the response
time for any new application for similar kinds of
application tests in pipeline.

The project management focus was shifted to schedule
and quality. From a process perspective, metrics data from
individual quality check points defined at regular
frequencies from various performance testing projects was
used to build upon predictability. Using this data process
capability baseline was established and referred for
projects spanning across the organization.

Statistical process control (SPC) techniques [7] were used
to ensure that the process is within the control limits and
variation is minimal at each quality check point. The SPC
graph in figure 4 for effort deviation shows that effort
deviation for initial applications/cycles was outside the
control limit and later brought within the control limits.
Tracking of this metric made effort deviation more
predictable for next phases.

Figure 4: SPC for effort deviation

Process improvements were measured at every milestone.
Analyzed optimization strategies were applied to
performance testing projects across the organization. As a
result costs were observed to be minimized across wide
segments of the organization.

4.5. Level 5
In this optimizing phase, innovation and defect prevention
(DP) activities were continuously applied and improved.
Some of the verifiable benefits seen include improved
performance testing knowledge and skill level of the
resources, which resulted in reduced time to market. The
productivity and quality improvement strategies clearly
lead to reduced cost of testing. There was more emphasis
on quality and schedule with cost and size being given the
back seat.

At this level there was focus on improving processes for
dealing with business changes like technology changes,
customer positioning, time to market, test execution
methods etc. Decision analysis and resolution techniques
were used to identify and implement new strategies.
Process work flow was continuously updated and kept
current. Implementation aspects of the key strategies and
risk management planning were carried out as part of the
detailed project plan.

Test management monitored and contributed towards
improving following operational goals: COQ,
productivity, quality, schedule adherence, effort variation
and defect removal efficiency. These goals monitored at
project level were mapped to organizational strategies due
to which cross disciplinary cooperation and top
management involvement in decision making became
prominent.

At this level, the client realized the fact that “Prevention is
always better than cure”. So an upward trend was seen in
prevention cost for quality, which automatically led to
reduction in appraisal and failure costs. The end result
was an overall reduction in cost of quality to 4%. Overall
Cost of Quality [8] and its components observed at each
level for a project are shown below.

Effort Deviation

-30

-25

-20

-15

-10

-5

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Applications

E
ff

o
rt

 D
e
v
ia

ti
o

n
 %

Avg UCL LCL Goal Effort Deviation%

Figure 5: COQ, appraisal, prevention and failure cost

The trend here shows that as the project matured usage of
appropriate preventive measure like defect prevention,
training and review activities brought down the failure
cost where by improving the COQ.

4. Benefits from CMMI implementation
Some of the important benefits achieved by CMMI
guidelines implementation in this project were:

• Reduced testing cost – Implementation and

streamlining of performance testing processes helped
increase productivity and reduced the failure cost.
Thus an overall reduction in testing cost was
achieved, which also increased profitability.

• Customer delight - Addition of performance
engineering activities helped reducing post
production defects. Along with proper process this
helped improved quality and reliability which made
customers happy. This also improved repeat business.

• Reduced cycle time – Continuous performance
testing process improvements led to reduced cycle
times for future releases. This positively impacted
time to market, delivery time and increased bonuses
for early delivery.

• Elevated employees’ motivation – Clarity of goals,
activities to be performed and setup of tracking
mechanisms increased employee morale and service
provider’s confidence. This decreased employee
turnover and increased employee retention, reduced
retraining costs and improved overall competitive
advantage.

5. Summary and Conclusion
In absence of processes, there is neither any guarantee of
repeating the project success nor any basis for improving
the productivity and/or quality. This paper summarized
our experiences of using the CMMI framework for taking
performance testing projects from initial ad-hoc
executions to continuously optimizing levels. The benefits
obtained at each maturity level in the presented case study
accentuate the importance of model usage. So it is
suggested to implement performance testing processes
evolving using CMMI maturity model for delivering cost,
schedule, size and quality effective projects and products.

6. References
[1] http://en.wikipedia.org/wiki/Software_performance_t

esting
[2] http://www.sei.cmu.edu/cmmi/general/
[3] http://www.sei.cmu.edu/solutions/softwaredev/
[4] “Capability Maturity Model® Integration

(CMMISM), Version 1.1”, CMMI Product Team,
March 2002

[5] J.D. Meier, Carlos Farre, Prashant Bansode, Scott
Barber, “How To: Manage the Performance Test
Cycle in a Regulated (CMMI) Environment”,
CodePlex website.

[6] Pete Utton, Gino Martin, “Further Experiences with
Software Performance Modelling”, WOSP98, Santa
Fe, NM.

[7] http://csqa.info/statistical_process_control_spc
[8] http://thequalityportal.com/q_CoQ.htm

COQ - Prevention, Appraisal and Failure costs

0

10

20

30

40

50

L1 L2 L2 L3 L4 L5

CMMI Levels

%
 C

O
Q

Goal
Actual COQ
Appraisal
Prevention
Failure

http://en.wikipedia.org/wiki/Software_performance_testing�
http://en.wikipedia.org/wiki/Software_performance_testing�
http://www.sei.cmu.edu/cmmi/general/�
http://www.sei.cmu.edu/solutions/softwaredev/�
http://csqa.info/statistical_process_control_spc�
http://thequalityportal.com/q_CoQ.htm�

Not Your Father’s or Grandfather’s Mainframe Any More
David J. Lytle, Brocade Communications

dlytle@brocade.com

So, the truth is, the old mainframe way of doing things that I grew up with back in the 1960’s and
1970’s is gone. The mainframe back then was a monolithic approach to computing. Within a
few decades it became a dinosaur – a large and efficient dinosaur – but a dinosaur nonetheless.
It became slow moving in a faster and faster paced world. Users wanted and needed new
applications and application updates at a rapid pace while the mainframe programming staffs
seemed to move at glacial speed. As a direct result of this disconnect between expanding
user’s needs and the inability of the centralized computer system to respond appropriately, the
users looked for new ways to fulfill their needs. And off they went to decentralized processing
and direct control of their computing resources. Over time, the terminal result was that
computer platform competition was reducing the mainframe’s feeding ground to the point that by
the latter part of the twentieth century it was headed for extinction. But then, rather than
succumbing to obsolescence it reinvented itself and evolved into the magnificent machine that it
has become today. In the end the twentieth century “computer wars” made the mainframe
supremely powerful, more agile and incredibly more capable.

That evolution from the “my way or the highway” kind of early day mainframe computer
processing allowed the mainframe to morph into a platform for the multitudes where legacy
mainframe applications run happily alongside more distributed workloads such as Linux and
Unix – and all on the same re-centralized and easier to manage computer platform. IBM has
once again made the mainframe relevant across the spectrum of computer users that inhabit
the globe today. In fact, IBM often refers to its “mainframes” as large servers and emphasizes
that they can be used to serve distributed users and smaller servers in a computing network.

Cloud computing is a great example. In recent years the notion of “Cloud Computing” has
emerged and many customers have a desire to move toward a cloud based structure. This
alone has re-energized interest in the mainframe since it is the only platform really capable of
providing private cloud computing services.

For the distributed world, the primary stumbling block for cloud computing has been the
hypervisor. All of the entities in the cloud must coordinate their capabilities, availability and
resources which require a common hypervisor to collect and communicate this information
before acting on it. That has proven to be more than difficult when using a distributed server
farm.

But today’s goals and requirements for cloud computing can be met with the industry leading
reliability, serviceability, and availability (RAS) features that are built into the mainframe along
with its additional ability to distribute resources as the demand ebbs and flows. One of the
embedded mainframe services, the Resource Manager, already provides the necessary
coordination functions and the system resources are managed in a homogeneous manner.
Consequently, the System z® mainframe is really the closest implementation of the heralded
cloud computing complex available today. There is not a single distributed solution can match
the cloud capabilities of the mainframe – and System z® can do it right now!

Beyond the high level notion of cloud computing, high-performance software solutions have also
evolved that can leverage the performance, security and availability of the mainframe in this

mailto:dlytle@brocade.com�

world of internet time, Web interfaces and Service-Oriented Architectures (SOA). An example
of mainframe agility for distributed processing workloads would be the IBM WebSphere Portal
for System z®. Today’s mainframes are designed to excel at business computing, which
typically involves hundreds or thousands of transactions per second.

The mainframe has always had it strengths: Its robust RAS that provides for zero or almost zero
downtime over a year or many years; scalability which is the ability of the hardware, software, or
a system to continue to function well as it is changed in size or volume; security which provides
protection against unauthorized access, transfer, modification, or destruction, whether
accidental or intentional; and virtualization which builds on physical partitioning and offers the
ability to simulate availability of hardware – CPU, memory and I/O – and operating system (OS)
resources.

Of course, a distributed system has its strengths as well: Speed of deployment; inherent
distribution; decent (or “good enough”) reliability; perceived cost savings and incremental
scalability for growth. Overall, I believe that the traditional benefit of distributed computing has
been that it enables a customer to optimize their computing resources for both responsiveness
and economy. But neither of these technologies work in a vacuum so some really good minds
have looked at these various technologies and incorporated bits and pieces that would help
their own systems work better.

As some of the mainframe technologies trickle down to distributed systems, those systems are
getting better at hosting mainframe-class applications and they are slowly beginning to achieve
some of the traditional mainframe benefits like high availability, scalability on demand and
improved overall utilization. But, at the same time, the mainframe is becoming more like
distributed systems with an ability to locally execute UNIX and Linux applications and also to
link with IBM blade servers and manage AIX, Linux and Windows applications using the unique
mainframe-based Resource Manager application. So in our world today, all of this makes it
perplexing for a customer to decide which is the best platform to meet their unique computing
needs.

When customers are trying to understand the difference between distributed platforms and a
mainframe platform one of the significant differences is how their I/O subsystems work. I am
sure that customers sometimes puzzle over the benefits and costs of running DB2, WebSphere,
Unix and Linux on the mainframe versus running them on an open systems platform. I also
suspect that they often calculate total cost of ownership without understanding both the benefits
of collapsing the different tiers into one, much more easily managed system as well as the cost
and performance benefits that can accrue by using a mainframe I/O subsystem. So I think that
it is important for a user to understand how significantly different I/O is accomplished on
distributed processor systems compared to the mainframe.

Mainframe I/O is Main Stream Functionality and It Is Very Robust:

On a mainframe, I/O is arguably just as important a task to be performed for applications as the
computing that is done for those applications. In order to make certain that I/O is treated as a
mainstream task the mainframe I/O subsystem has several unique and very powerful design
features that create a major differentiator between distributed computing systems and a
mainframe computer environment.

First of all, virtualization is everywhere in the mainframe and has been everywhere for decades
allowing it to mature into a very stable infrastructure. For example, through the use of

virtualization, a DASD storage array can have as many as 256 Logical Control Units (LCUs)
each with 256 devices so a mainframe can address up to 65,536 total volumes within just one
storage array. All of the information needed to get to any LCU and volume is contained within
each frame of a mainframe Fiber Connection (FICON) I/O. The mainframe does not need any
special services to make this happen. What do I mean by a special service? An example of a
special service for distributed processing would be Single Root I/O Virtualization (SR-IOV) that
allows a PCIe device to appear to be multiple separate physical PCIe devices. In effect, this
provides a form of virtualization. An example of a special service on the mainframe would be
Node_Port ID Virtualization (NPIV), developed in the mid-1990s, which is an FCP SCSI I/O
service that allows Linux on the Mainframe to capitalize on a similar type of channel
virtualization that the mainframe has been providing for its legacy applications for 30+ years.

One of the most important differences in how I/O is carried out by the mainframe and how it is
carried out by distributed processors is how server to storage connectivity is initially created. In
my experience, mainframe people tend to be type A, control-oriented personalities so they have
historically always desired to directly manage everything that happens on their mainframes. A
mainframe systems programmer will use a tool called Hardware Configuration Definitions (HCD)
to describe his mainframe environment including exactly the path(s) that every I/O will take from
the CHPID out to a storage device. If it is not described in HCD then the I/O just will not
happen. Performance and predictability are king in the mainframe world so mainframe
technicians rely upon their own tools to create robust I/O delivery.

Distributed systems administrators, on the other hand, seem to rely more on the Plug-n-Play
model and are more casual about how I/O gets accomplished. In their world it seems that ease-
of-use and simplified management is king. Therefore they utilize all of the protocol stack
capabilities of the Fibre Channel Protocol including the name server service to identify I/O
routes and connectivity. The Systems Administrators then leave it up to the FC protocol to find
the I/O path(s) that provides them with server to storage connectivity. This Plug-n-Play
methodology will generally be successful but sometimes at the expense of poor performance
and less robust I/O frame delivery since the I/O path connectivity is completely left up to the FC
protocol.

Mainframe Systems Programmers have other tools that aid in providing robust I/O delivery. The
System z® operating system has a built in capability known as “Path Group”. On the mainframe
a user can group up to 8 of their physical connections between the Channel Path IDs (CHPIDs),
which are the mainframe I/O ports, out to connected storage ports. It is the mainframe channel
subsystem that decides which path in the path group will be used by deciding which path is
least busy and which paths are operational, etc. Path Groups allow I/O to be automatically
spread evenly and fairly across a number of physical channel paths without over-subscribing
any given I/O path.

Mainframe Path Group functionality is not a capability that is provided for distributed processors
and their data paths. Once again special services must be provided to balance I/O across
multipath configurations between servers and storage (and this software is often left out of TCO
calculations). Examples of this are EMC® PowerPath® Multipathing and IBM® System Storage®
Multipath Subsystem Device Driver (SDD). Both are special purpose software applications
installed on a distributed server to control and balance multipath I/O operations. Other vendors
also have their own multipathing solutions.

Addressing, and particularly device addressing, is very robust on mainframe platforms. If a
customer needs to do a great deal of I/O to online or tape files, the mainframe is a customer’s

best choice. Mainframes utilize hexadecimal addressing (base 16) and a single mainframe
channel can access device addresses from x”0000” to x”FFFF” (e.g. 0000 to 65,535 in
decimal).

A logical partition (LPAR) on a mainframe is allowed by the z/OS operating system to have up to
256 channels to access data. That is potentially 256 channel paths, each running at 800Gbps,
and all together they can be connected to 256 devices concurrently from just one LPAR. A z9,
z10, z196 or z114 mainframe can have up to 60 LPARs running concurrently. And each of
them can be using up to 256 channels (often channels are shared between LPARs) to access
data. Mainframes can have as many as 1,024 physical channels that can be parceled out to as
many LPARs as are running on the mainframe, but no LPAR can utilize more than 256 I/O
channels. While a System z® processor complex may be capable of running thousands of
applications simultaneously across as many as 60 logical partitions (LPARs), since each
System z® has only 256 channels (paths) that it can supply to any given LPAR, channel
addresses are a precious commodity and must be used wisely. Even with this channel
limitation per LPAR, mainframes can fairly easily access and make use of many thousands of
the potential 65,535 addresses (data volumes) that are available to it per channel and per
storage array.

Now consider a Parallel Sysplex (multiple mainframes working together) where, for very large
enterprises maybe as many as 20 or 30 mainframes are participating together in this clustered
kind of environment! The scale obviously ramps up until it is just incredible.

Many customers agree that mainframes provide the most robust and secure I/O connectivity
available. And today’s most modern mainframe channel can run at 800Gbps (an aggregate
1600MBps full duplex) which is the same speed that is possible when using HBAs on distributed
servers. But even with similar performance characteristics, the difference is night and day
between mainframe I/O and distributed I/O.

Fibre channel protocol-oriented, distributed, online I/O (FCP) will map Small Computer Systems
Interface (SCSI) into the payload of a frame from the FC-4 protocol layer that is then sent over
fiber cables to disk devices. At its core SCSI provides an agreed upon set of standards for
physically connecting and transporting data between distributed server initiators (computers)
and targets (peripheral devices). The target port is always responsible for making sure frames
are received in order sequentially as well as making sure that all frames meet high requirements
for data integrity. I/O is accomplished through I/O “exchanges”. Timing of I/O in SCSI
environments is rather tolerant. Disk is parceled out in Logical Units (LUNs) that can be size
formatted in a variety of ways.

Fibre channel protocol-oriented, mainframe, online I/O (FC FICON) will be to “Count, Key, Data”
formatted Direct Access Storage Devices (DASD) volumes. Input/Output (I/O) is accomplished
through I/O “exchanges”. The major difference here is that mainframe FICON will have a
standards-based FC-SB2, FC-SB3 or FC-SB4 payload in the frame from the FC-4 protocol layer
while FCP always has a standards-based SCSI payload which is incompatible with FICON
payloads. The FICON receiving port is always responsible for making sure frames are received
in order sequentially as well as making sure that all frames meet high requirements for data
integrity. Timing of I/O in mainframe environments is very strict (2 second channel timer).
DASD is parceled out in Volumes that can be size formatted in a variety of ways. Volumes are
further sub-divided into data sets and it is data sets that are used by mainframe applications.

On the mainframe there are two modes of FICON I/O operation: Command Mode FICON
(standard FICON); and Transport Mode aka High Performance FICON (zHPF). zHPF does a
more effective job of building frames to meet the requirements of the I/O exchange that it is
transporting than does standard FICON. This results in a dramatic increase in the number of
start I/Os and MBps of data transferred for zHPF compared to Command Mode FICON. But
both deliver I/O frames more successfully and robustly than any SCSI-based distributed server.
A mainframe channel running zHPF has the capability to deliver as many as 92,000 start I/Os
per second. And if a customer is looking at throughput as a metric, 8Gbps mainframe zHPF
channels can deliver as much as 1,600MBps of throughput each. In the ultra-extreme and highly
unlikely case that all of the 8Gbps mainframe channels were running full speed, then the 320
FICON Express8S channels being used by zHPF would be providing 512,000 Megabytes per
second of data movement – (320 x 1600MBps = 512,000) – a phenomenal .5 Terabytes per
second of data throughput rate.

From the mainframe outbound, FICON allows many different commands to be done in one I/O
stream which is not the case for FCP SCSI I/O. In one operation a mainframe can execute lots
of different I/O operations. And when using Command Mode FICON a channel path can
disconnect pretty easily from its destination port. zHPF, however, is more strict. When using
zHPF a path disconnect can only be done on the last command of a string of commands.
Channel End/Device End (CE/DE) status will signal the end of a FICON I/O operation.

From the storage array outbound, it is the storage control unit that really chooses a return
channel path after an I/O disconnect. This allows each storage vendor to have a different
algorithm to accomplish sending I/O back to the mainframe. Although an I/O often uses the
same path from CHPID to Storage and then again from Storage to CHPID, a storage adapter
busy or other condition might have the storage Control Unit (CU) pick a different channel path
than the original path for the I/O path reconnect.

With all of the complexity inherent in a data processing complex today, it would seem
appropriate that some form of coordination take place across the common resources like CPU,
I/O and Storage so that all of the applications running on computer systems benefit accordingly.
Not too surprising, the distributed world is just beginning to develop common, cohesive,
dedicated functions to provide this detailed level of resource coordination. Thankfully, the
mainframe has had it for decades.

One of the strengths of the System z® mainframe and its z/OS operating system has been its
ability to run multiple workloads (legacy and distributed) at the same time within one operating
system image or across multiple images. Such workloads have different, often competing
completion and resource requirements. These requirements must be balanced in order to make
the best use of the resources of an installation, maintain the highest possible I/O throughput and
achieve the best possible system responsiveness. The unique mainframe function that makes
this possible is its dynamic workload management which is deployed via two synergistic
functions – the Workload Management component of the z/OS operating system and the Unified
Resource Manager (URM – sometimes called zManager).

With z/OS Workload Management (WLM), a customer defines performance goals and assigns a
business importance to each goal. The customer defines the goals for legacy work in business
terms, and the System z® decides how much resource, such as Channel, CPU or Storage,
should be given to it to meet the goal. Workload Management will constantly monitor the system
and adapt processing to meet the goals. The Unified Resource Manager, introduced with
System z196, enables a customer to install, monitor, manage, optimize, diagnose, and service

resources and workloads from a single point of control while extending System z® qualities of
service across the entire infrastructure including its distributed processing. It’s important to
recognize that the URM provides value to heterogeneous workloads running only on the
Computer Electronics Complex (CEC), meaning a z/OS and z/Linux workload. The use of Linux
on System z® is growing rapidly and the URM makes deploying a workload on a Linux server
running on System z® much easier than ever before. And although it is beyond the scope of this
paper to discuss, when the System z196 or System z114 are connected to an IBM zEnterprise
BladeCenter (zBX) the URM can not only manage all of the System z® z/OS and z/Linux
workloads, it can also manage Linux, AIX and Windows applications that are running on the
zBX – a level of distributed processor blade center management never possible before.

All of these System z® capabilities have lead to easier but very robust storage management for
the mainframe system administrators. At the same time, storage management has been a rocky
road for distributed processor administrators. Some analysts have projected that a non-
mainframe storage administrator should be able to manage an average of 30 terabytes of disk
storage. In comparison, the typical mainframe storage administrator, using powerful tools,
effectively manages well over 100 terabytes of DASD storage. Mainframe environments simply
require less manpower resources for their management.

I/O Is Taken So Seriously On The Mainframe That It Is A Specialized Function:

As was already pointed out, many applications running on many LPARs may simultaneously
traverse a relatively small number of I/O paths on a mainframe. This means that channel path
bandwidth utilization is almost always significantly higher (i.e. more efficiently utilized) on
System z® than on a typical distributed systems FCP path. The mainframe therefore must take
care to feed the I/O appetite of its applications very carefully – and it does.

So another tremendous differentiator is that the mainframe, unlike its distributed server cousins,
DOES NOT use its own compute processors to do application I/O!

The mainframe can make use of specialized processors that are designed to enhance
performance and hold down mainframe software costs. These special processors are: the IFL or
Integrated Facility for Linux which is dedicated to Linux OS processing (and optionally used
under z/VM); zAAP or System z® Application Assist Processor which is currently limited to
running only Java and XML processing; and zIIPs or System z® Integrated Information
Processors which are dedicated to running specific workloads including DB2, XML, and IPSec.

The final specialized processor type are the I/O channel processors (System Assist Processors
– SAP) which are dedicated to handling I/O. Basically, when a mainframe wants to do an I/O it
writes that request to memory, then alerts the SAP that the I/O is waiting for it in memory, and
then the mainframe itself moves on to other compute-oriented work. The special I/O channel
processors then take care of getting the I/O processed and sent down the appropriate channel
path and they do all the waiting for devices to respond to commands, the data, etc. Once an I/O
is complete the SAP communicates that status back to the mainframe who can then return to
processing the application that issued the I/O in the first place.

All of these specialized processors combined are why mainframes can get such a tremendous
amount of compute work done. All that the mainframe engines do is “compute” work while the
lengthy and time consuming I/O interactions are handled by the specialized I/O processors. This
unique division of work and I/O, with each process doing what it does best, is unique to the
mainframe!

What follows then is that compute-centric, transaction related workloads, such as data
warehouses, all run better on the mainframe than anywhere else. As long as the workload is I/O
intensive and not CPU intensive, the mainframe is hands down the best platform for a customer
to utilize. On the other hand, that is also why not all workloads will run as well on a mainframe
as on a distributed server. A customer must choose these platforms wisely. There are many
forums that will distinguish which workloads run best on mainframes and which run best on
distributed servers.

On a distributed server, when a customer does I/O, they are doing it by utilizing the main CPU
on that chassis. Of course, distributed CPUs can be very speedy but it is important to note that
with the advent of the System z196, the mainframe now has the fastest-in-the-industry
microprocessor and clock speed. All of that notwithstanding, I/O takes time and distributed
processors must therefore have their CPU wait until the required I/O is complete before more
computations can occur on that chassis. Since all processors wait at the same speed, when
dealing with I/O intensive applications the customer using distributed servers can end up with
marginal processor utilization (often distributed servers average only 20-30% busy). These
customers will also receive much less than the full value of their fast server processor
particularly during I/O operations. Obviously, per the discussion above, this is not true on
mainframes.

There is an outstanding white paper titled, “Why Your Organization Should Use Workload
Optimized Servers“. The paper was written by Clabby Analytics (www.clabbyanalytics.com). It
is available for download at
http://www.workloadoptimization.com/uploads/WhyWrkloadOptimization.pdf,

According to this paper, “Clabby Analytics has obtained benchmark information on System z®
(mainframes), Power Systems® (POWER-based servers), and System x® (x86-based servers)
from IBM’s software group project office located in Poughkeepsie, New York. This data
compares how each environment handles workloads that involve heavy I/O, heavy data-
intensive processing, and light workload processing. In each case, System z®, Power Systems®,
and System x® servers were asked to handle the same workload and were given identical
service level requirements.”

In the paper’s example, the cost of processing an online Linux banking application that
completes 22 transactions per second while processing 1 MB of I/O per transaction varied
significantly when comparing Mainframes to Power Systems® and to x86 servers.

It can be extrapolated from the study that a single System z196 32-way mainframe can run 240
of these Linux workloads when using 32 Integrated Facility for Linux (IFL) features.

Compare that to a distributed systems Intel® Xeon 8® core blade which was capable of running
only 10 virtual machines handling the same application at the same service level per core blade.
So it would require 24 Xeon 8® core blades (and associated enclosures, networking
components, and software) to handle the same application at the same service level as a
mainframe.

And for the final comparison, an 8-way Power System® blade can run about 15 virtual machines
running the same application at the same service level. This means that it would take 16 Power
System 8® core blades (and associated enclosures, networking components, and software) to
handle the same workload as a mainframe. And keep in mind that the mainframe would be

http://www.clabbyanalytics.com/�
http://www.workloadoptimization.com/uploads/WhyWrkloadOptimization.pdf�

maximizing the value of its processors; would be able to utilize NPIV in a switched-FICON
environment to drive high bandwidth utilization per channel path; would be would be much
easier to manage; and would require less power, less cooling, and less floor space.

Let’s Discuss Why Switched-FICON I/O Provides The Best Value For Data Traffic:

Brocade Communications Inc. has a whitepaper that describes the benefits of doing mainframe
I/O through Fibre Channel switching devices. It can be found at the following website:
http://www.brocade.com/downloads/documents/white_papers/why-ficon-wp.pdf

What I want to do here is simply provide a few of the many, many reasons why it is prudent to
deploy a FICON I/O infrastructure by utilizing switching devices rather than by direct attaching
mainframe channels to storage ports.

Both Storage Area Networking (SAN with FC SCSI) and FICON Fabrics (FC FC-SB2/3/4) can
and should make use of FC switching devices. But with the mainframe there are several
capabilities that do not apply to SAN implementations and these are the capabilities that I want
to mention here.

Since the delivery of the System z9 years ago, IBM has been modifying the mainframe I/O
subsystem to provide users with additional functionality. Some of this functionality can only be
utilized when switched-FICON fabrics are deployed. In fact, IBM has announced a series of
technology enhancements that require the use of switched FICON infrastructures. These
include: NPIV support for z Linux SCSI I/O; Dynamic Channel Path Management (DCM) for
FICON; and z/OS FICON Discovery and Auto-Configuration (zDAC).

Node_Port ID Virtualization (NPIV), as discussed above, is an excellent special process
available for Linux on the Mainframe. NPIV allows many FCP I/O users to interleave their I/O
across a single physical but virtualized channel path which minimizes the number of total
channel paths. For example, if a System z® is running 300 Linux guests then maybe 20
channels can be virtualized with NPIV such that each set of 15 Linux guests makes use of one
of the 20 virtualized channel paths driving each of those individual physical channels’s utilization
towards peak performance. NPIV is only available when using switched-FICON environments.

FICON Dynamic Channel Management (DCM) provides an ability to dynamically add or remove
channel resources at the Workload Manager application’s discretion. This allows Workload
Manager’s Goal Mode to effectively utilize mainframe channels to make sure that application’s
are completed on time. Use of DCM is available only in switched-FICON environments.

z/OS Discovery and Configuration (zDAC) provides a simplified and discovery-oriented method
for configuring new and/or changed FICON connected DASD and tape configurations. zDAC is
only available when using switched-FICON environments.

As IBM continues to introduce innovation onto the mainframe, customers will very likely see
more and more I/O capabilities that are tied to the use of switched-FICON infrastructures. And
the only way that customers will reap the benefits of these new functions is to deploy switched-
FICON fabrics.

http://www.brocade.com/downloads/documents/white_papers/why-ficon-wp.pdf�

The Latest Generation of Mainframe Is Simply The Swiss Army Knife of Computers:

The latest System z® Business-class mainframe (z114) is single frame design about the size of
a refrigerator; uses less energy than an American clothes dryer; heterogeneously runs legacy
as well as UNIX and Linux distributed system applications; effectively manages legacy and
distributed systems on its own CEC as well as AIX, Linux and Windows on attached zBXs; can
handle about 30 Linux servers per z114 core and about 300 Linux servers in total; can deploy a
new virtual Linux server in just a few minutes and provision each of its Linux servers at a cost of
about US$500 per year; yet surprisingly, an entry level z114 sells at an economical cost of
around US$75,000. It is also important to note that z114 introduced the PCIe I/O (Peripheral
Component Interconnect Express protocols) infrastructure as a new feature to Mainframe
systems (common in UNIX and other distributed systems).

As for the latest Enterprise-class mainframe (z196), well it can do everything the z114 can do
and much more. The z196 is a two frame design that uses the world’s fastest microprocessor
which clocks in at a blazing 5.2 GHz. According to IBM, a z196 can replace up to 1,500 x86
servers while requiring an 85% smaller footprint; it is capable of executing more than 50 billion
instructions per second; each of its processors uses less energy than a 40 watt light bulb so it
provides up to 85% lower energy costs (when considering both power and cooling) than
distributed systems; it can support up to 47 distributed servers (like Linux) on a single core and
up to 1000’s on a single system; and it also can make use of the new PCIe I/O infrastructure.

It is obvious to me that IBM is laser-focused on improving the mainframe’s momentum for
providing computing to both large and medium market segments. All of the factors mentioned
above will help almost any customer achieve better systems management, faster deployment
and quicker response time. I also suspect that many industry observers, who once saw the
mainframe as a fading dinosaur, now must concede that this new “Big Iron” is going to stick
around and that IBM is working hard to keep it relevant.

In Summary:

IBM’s System z® mainframe draws on decades of innovation and collaboration with advanced
customers in all segments of computing – customers who run the most complex computer
operations on the planet. Executives all over the world are finding out that the System z® is
simply the most powerful tool available to them to reduce cost and complexity and improve
security and reliability in their enterprises. A telling point to that argument is the mainframe’s
upsurge in adoption, over the past several decades, for solving the world’s most complex
business, governmental and academic challenges around the world.

When you go trolling around the internet you can do some searches on the amount of data
hosted on mainframes. Dozens of entries will proclaim that, “more than 70% of the world's
business-critical data resides on mainframes.” Since that data has to be processed, maybe
some of the points in this paper have made it clear to you why so much of the world’s business-
critical data IS hosted and processed on mainframes. I hope so.

References:

[1] Governor, James, Its the I/O Stupid: Linux on z, The Mainframe Blog, March 2006.
[2] Madden, Ned, The Mainframe Lives, www.technewsworld.com, March 2008.
[3] Madden, Ned, Big Iron Keeps on Trucking, Part 2, www.technewsworld.com, March 2008.

http://www.technewsworld.com/�
http://www.technewsworld.com/�

[4] Ng, Dennis, zEnterprise FICON Channels Review, July 2011.
[5] Clabby Analytics, Why Your Organization Should Use Workload Optimized Servers,
February 2011.
[6] IBM Corporation, z/OS Workload Management, http://www-
03.ibm.com/systems/z/os/zos/features/wlm/
[7] Brocade Communications, Inc., Why Switched FICON? (Switched FICON vs. Direct-
Attached FICON), http://www.brocade.com/downloads/documents/white_papers/why-ficon-
wp.pdf, September 2011
[8] Guendert, Steve Ph. D., To Switch or Not to Switch? That’s the Question!, The Mainframe
Zone, http://www.mainframezone.com/it-management/to-switch-or-not-to-switch-thats-the-
question/P4, October 2011
[9] Wexler, Steve, IBM Breathes New Life Into Mainframe With zEnterprise 196,
http://www.networkcomputing.com/servers-storage/229501123, September 2010
[10] IBM Corporation, zEnterprise 114 (z114), http://www-
03.ibm.com/systems/z/hardware/zenterprise/z114.html, July 2011

http://www-03.ibm.com/systems/z/os/zos/features/wlm/�
http://www-03.ibm.com/systems/z/os/zos/features/wlm/�
http://www.brocade.com/downloads/documents/white_papers/why-ficon-wp.pdf�
http://www.brocade.com/downloads/documents/white_papers/why-ficon-wp.pdf�
http://www.mainframezone.com/it-management/to-switch-or-not-to-switch-thats-the-question/P4�
http://www.mainframezone.com/it-management/to-switch-or-not-to-switch-thats-the-question/P4�
http://www.networkcomputing.com/servers-storage/229501123�
http://www-03.ibm.com/systems/z/hardware/zenterprise/z114.html�
http://www-03.ibm.com/systems/z/hardware/zenterprise/z114.html�

Processor Selection for Optimum Middleware Price / Performance

David A. Kra, Principal Architect / Account CTO, Infocrossing℠, Inc.

Many middleware products can be deployed onto many combinations of
processor architecture and operating system. Finding the most cost effective
combination is complicated by software pricing based on vendor core weighting
factors. This paper explains how to combine core weights, core counts, and
performance data to calculate and compare a “Performance Rate per Weighted
Core.” Results are provided for the Oracle data base server as used in published
TPC-C and TPC-H benchmarks.

Introduction

Question: What platform would provide the best price / performance for your usage of a middleware
product, such as Oracle’s Database Server?

It may be a straightforward question, but there are complications that make this analysis not-so-easy:

Oracle comes in different versions, such as Standard, Enterprise, and RAC.

It is expensive to run benchmarks and there are contractual constraints on publishing the
results.

If we subtract out items which are relatively independent of platform, such as disk storage and
networking, then the biggest cost item will probably be the Oracle licenses and maintenance.

Oracle Database license and maintenance pricing is often negotiated to be less than the
published list price. However, even at a substantial discount, the DBMS Software usually costs
more than the computers it runs on.

Oracle DBMS pricing is based on the quantity of “weighted cores” it will run on. Oracle places
different core weighting factors on different processors depending on the architectures,
speeds, implementations (chip models), the servers in which they are installed and when they
were sold. For example, according to the Oracle Processor Core Factor Table, (current as of
August, 2011) a SPARC family processor core may be weighted by a factor of 0.25, 0.5, or 0.75
depending on several other attributes of the chip and how it is used.

The software cost for four cores with a core weighting factor of .25 is the same as for 1 core with a
weighting factor of 1. If all these cores performed the same, there would be a 4x software price

performance advantage for the system with the cores weighted 0.25, as indicated in the following
table.

Table 1

Sample Oracle Core Weighting Factors

Core Weighting Factor Ratings Advantage Example Processor
0.25 4x Oracle SPARC T3
0.5 2x Intel XEON 75xx

0.75 1.33x HP PA-RISC
1 1x IBM POWER6

Question: So which platform should you put your Oracle Database Servers on to get the best price /
performance?

Answer: The one that can do the most work per dollar, which is to say, the platform which can
do the most work per weighted processor count, because that drives the software costs. Only if
comparisons come very close do we need to consider other cost items, such as hardware and
operating system.

Question: What is the source of the weighted performance advantage? Is it processor speed, cache
size, cache per core, hyper-threading, or the software vendor’s choice of weighting?

Answer: That question is asking how and why, which may be interesting, but is not really
pertinent to the issue of determining the best performance-for-the- price platform based on
experience. However, it does become pertinent when we need to select among new products
with which we do not have experience.

The majority of this paper uses:

• Oracle’s Database Management System (DBMS) as the example middleware product
• The Transaction Processing Council’s TPC-C and TPC-H applications as the workload
• Published TPC-C and TPC-H benchmark results for performance data

The method used here could be applied to your benchmarks of your own workload. It also could be
applied to any other middleware product from any vendor who charges based on weighted cores. If
your DBMS is Oracle and your usage is similar to the TPC-C or TPC-H usage pattern, then these results
may be directly applicable to your situation.

Methodology

To circumvent benchmark effort and publication restrictions, I analyzed already published Transaction
Processing Council (TPC) TPC-C v5 and TPC-H benchmark results where the database server was any
form of Oracle.

Rather than calculating performance per core, I calculated performance per weighted core (P/WC),

using Oracle's weightings. In the TPC-C and TPC-H technical architectures, “back end” servers run the
DBMS.

For each back end server, I looked up its Core Factor in the “Oracle Processor Core Factor Table.” I then
multiplied that factor by the total number of server cores as given in the benchmark results
spreadsheet. This gives the weighted DBMS server cores in the solution.

While the TPC-C benchmark results table also lists “front end” processors, since these do not run the
DBMS server software, they do not count in this analysis.

I derived how many TPC-C transactions per second were achieved per weighted server core by dividing
the TPC-C TPS by the solution's weighted server core count.

I did the same analysis for published TPC-H benchmarks.

One TPC-C benchmark was omitted from the top performer analysis. It was one of two Power based
benchmarks that appeared to be identical except for the fact that one was submitted by IBM and the
other by Bull.

To answer the question about the source of the weighted performance advantage, an additional TPC-C
analysis factored out processor clock frequency. The analysis determined the weighted performance
per core per Gigahertz. I also analyzed cache size, cache per core, and hyper-threading attributes for
the processors,

Results

Oracle TPC-C Results

Table 2, shows the Top 20 TPC-C Oracle Performance per Weighted Core Results.

Table 2’s results are summarized in Table 3, the Top 20 TPC-C Performance per Weighted Core
Summary Results Table. It shows the chip architectures and, for the Intel XEONs, the operating system
they ran. All the IBM Power processors ran AIX, the Oracle SPARC processors ran Solaris, while the on
the Itaniums, two ran HPUX while one ran Red Hat Enterprise Linux.

Hyper-threaded Intel Xeon processors came out on top, followed by IBM Power6, Power5+, Oracle
SPARC T3, IBM Power5, Intel Itanium2 and non-Hyper-threaded Xeon.

TPC-C Relative Architecture and Design Rating, Table 4, shows the results of factoring processor speed
out of the analysis. Generally, the hyper-threaded Intel Xeon processors come out on top except that
the Oracle SPARC T3 comes out ahead of the Intel Xeon X5650. Itanium2’s are both ahead and behind
the Power5+ and Power5. The Power6 is below both the Itanium2 and the Xeon Quad-Core X5460.

These are the raw facts which are to be made sense of in the discussion and conclusions sections.

Table 2
Top 20 TPC-C Oracle Performance per Weighted Core Results

Processor

Cores /
Processo

r

Cache Per
Processor

Clock
Cache

Per
Core

Perf /
Weighted

Core
TpmC Cores

Weighted
Core

Factor

Intel Xeon Processor X5570 2.93GHz 4 8 2.93 2 157942 631766 8 0.50
Intel Quad-Core Xeon E5520 2.26GHz 4 8 2.26 2 119696 239392 4 0.50
Intel Xeon E5520 2.27 GHz 4 8 2.26 2 116001 232002 4 0.50
IBM POWER6 - 4.7 GHz 2 8 4.7 4 101116 404462 4 1.00
Intel Xeon X5650 6-core 2.66GHz 6 12 2.66 2 96680 290040 6 0.50
IBM POWER5+ - 2.2 GHz

78757 236271 4 0.75

SPARC T3 1.65GHz

70022 30249688 1728 0.25
Intel Xeon Quad-Core X5460 - 3.16
GHz 4 12 3.16 3 68417 273666 8 0.50
IBM POWER5 - 1.9 GHz

67813 203440 4 0.75

IBM POWER5 - 1.9 GHz

66741 1601785 32 0.75
IBM POWER5 - 1.9 GHz

64797 194391 4 0.75

IBM POWER5 - 1.9 GHz

61841 371044 8 0.75
Intel Itanium2 Dual-Core - 1.6 GHz

57642 230569 4 1.00

Intel Xeon X7460 - 2.67 GHz 6 16 2.67 2.67 53271 639253 24 0.50
Intel Xeon QC 5440 - 2.83 GHz 4 12 2.83 3 52246 104492 4 0.50
Intel Xeon X5355 - 2.66 Ghz 4 8 2.66 2 51227 102454 4 0.50
Intel Xeon X5355 - 2.66 GHz 4 8 2.66 2 50463 100926 4 0.50
Intel Itanium2 Dual-Core - 1.6 GHz

50207 200829 4 1.00

Intel Xeon QC 5440 - 2.83 GHz 4 12 2.83 3 48542 97083 4 0.50
Intel Itanium2 Dual-Core - 1.6 GHz

44930 359440 8 1.00

Table 3

Summary Top 20 TPC-C Performance per Weighted Core Results Table

Results Summary
Table: XEON

Oracle
Enterprise Linux
x86-64 on Xeon

MS Windows
Server x86-
64 on Xeon POWER SPARC Itanium

Top 5 TPC-C TPS per
weighted core

4 = (3 + 1) 1

Top 10 TPC-C TPS
per weighted core

5 = (4 + 1) 4 1

Top 20 TPC-C TPS
per weighted core

10 = (6 + 4) 6 1 3

Table 4
TPC-C Relative Architecture and Design Rating

Processor

Relative
Weighted

Architecture
& Design

Rating

Perf /
Weighted

Core /
GHz

Clock
(GHz)

Perf /
Weighted

Core
TpmC

Intel Xeon Processor X5570

1.00 53905 2.93 157942 631766
Intel Quad-Core Xeon E5520

0.98 52963 2.26 119696 239392

Intel Xeon E5520 2.27 GHz 0.95 51328 2.26 116001 232002
SPARC T3 1.65GHz 0.79 42438 1.65 70022 30249688
Intel Xeon X5650 6-core 2.66GHz 0.67 36346 2.66 96680 290040
Intel Itanium2 Dual-Core - 1.6 GHz 0.67 36026 1.6 57642 230569
IBM POWER5+ - 2.2 GHz 0.66 35799 2.2 78757 236271
IBM POWER5 - 1.9 GHz 0.66 35691 1.9 67813 203440
IBM POWER5 - 1.9 GHz 0.65 35127 1.9 66741 1601785
IBM POWER5 - 1.9 GHz 0.63 34104 1.9 64797 194391
IBM POWER5 - 1.9 GHz 0.60 32548 1.9 61841 371044
Intel Itanium2 Dual-Core - 1.6 GHz 0.58 31380 1.6 50207 200829
Intel Itanium2 Dual-Core - 1.6 GHz 0.52 28081 1.6 44930 359440
Intel Xeon Quad-Core X5460 - 3.16

0.40 21651 3.16 68417 273666

IBM POWER6 - 4.7 GHz 0.40 21514 4.7 101116 404462
IBM POWER6 - 4.7 GHz 0.40 21514 4.7 101116 404462
Intel Xeon X7460 - 2.67 GHz 0.37 19952 2.67 53271 639253
Intel Xeon X5355 - 2.66 Ghz 0.36 19258 2.66 51227 102454
Intel Xeon X5355 - 2.66 GHz 0.35 18971 2.66 50463 100926
Intel Xeon QC 5440 - 2.83 GHz 0.34 18461 2.83 52246 104492
Intel Xeon QC 5440 - 2.83 GHz 0.32 17152 2.83 48542 97083

Oracle TPC-H Results

Table 5 provides the Summary of Analysis of TPC-H Performance per Weighted Core. The results do
not show the consistency of the TPC-C analysis. They vary greatly with the scale of the benchmark. At
the highest scale, Itanium comes out on top. In the other two, Itanium comes out on the bottom.
SPARC has the highest rating for the midscale benchmark, but comes in second at the high and low end
benchmarks.

At benchmark Scale Factor 10000, the Itanium 9x40 benchmarks came out at 34% and 63% ahead of
the UltraSPARC IV+.

At benchmark Scale Factor 3000, the Power5 and SPARC 64 VII were 20% ahead of the Opteron dual
core 285, which was 46% ahead of the Itanium2 9050.

At benchmark Scale factor 1000, the XEON x5450 is 84% ahead of the SPARC 64 VI, which is 13% ahead
of the best result from the Itanium family.

This shows that what is best depends not only on the benchmark workload, but also its scale.

Table 5
Summary of Analysis of TPC-H Performance per Weighted Core

TPC-H Benchmark Scale 10000 TPC-H Benchmark Scale

3000
TPC-H Benchmark Scale
1000

1 Itanium (9x40) 1 SPARC (64 VII) & POWER5 1 XEON (x5450)
2 SPARC (UltraSPARC IV+) 2 Opteron (285) 2 SPARC 64 VI
 3 Itanium (Itanium2 9050) 3 Itanium

Discussion

Oracle TPC-C Analysis

Hyper-threaded XEON’s provided 80% of the top 5 results, while non Hyper-threaded XEON’s were half
of both the top 10 and the top 20.

Do not, however, place very much value on the quantity of benchmarks in the top 5, 10, or 20. The
quantity of entries represents the willingness of vendors to perform benchmarks and publish results.
The value of several similar results lies primarily in their consistency even as other elements may vary,
such as chipset, SAN attachment, storage subsystem, etc.

With regard to the operating system used in the XEON based benchmarks within the top 5, 10, and 20,
the operating system was Oracle Enterprise Linux for 75% in the top 5, 80% in the top 10, and 60% in
the top 20. The remainder of the XEONs in the top 20 ran an Oracle DBMS on Microsoft Windows
Server.

It is important to consider, however, that the operating system choice reflects the preferences of the
people who performed the benchmarks more than anything else, at least to some extent.

It is much more important to consider the groupings in Table 2’s Performance per Weighted Core
column. The first entry, 157,942 P/WC for the Hyper-threaded Xeon X5570 2.93GHz clearly stands out.
The next group, with ratings from 119,696 to 96,680 P/WC includes Hyper-threaded Xeon’s, and
Power6 with its Simultaneous Multi-Threading (SMT). The third group spans from 78,757 down to
44,930 P/WC.

Oracle TPC-H Analysis

There are not many benchmark results reported for TPC-H on Oracle, especially at scale 3000 and
10000.

The differences between 1st and 2nd place and 3rd place are much bigger at the high and low ends than
in the middle. At scale 3000 the differences between 1st and 2nd place is 20% while it is 63% and 84%
for scales 10000 and 1000 respectively.

Conclusions

The Methodology

The methodology is not difficult, certainly as compared to the effort to perform the published
benchmarks of middleware on several processor architectures. Given hardware and software pricing
trends, it is valid to assume that software costs completely overwhelm hardware costs to the point
that it can be ignored in the comparison.

• Oracle DBMS for TPC-C Analysis Related Conclusions

Architecture Assessment Summary

The Hyper-threaded XEONs come out on top because of performance and advantageous core factor
weighting.

The very top TPC-C Xeon performers had 4 Hyper-threaded cores. Other Xeon based solutions in the
top 20 had 4, 6, 8 or 24 non-Hyper-threaded cores, not necessarily all on one chip. With only one XEON
example in the top 20 with more than 8 cores, there are too few data points to be confident that this
analysis scales up much beyond 8 XEON cores.

The Power 6’s are next, due to sheer speed, in spite of heaviest weighting.

The SPARC T3 would still be in the top 20 chart, ahead of the some of the XEONs, even if it had the
same weighting factor as the XEONs.

The best Itanium result compares closely to the Power5 results. While the best XEON rating is 158K,
the Itanium results vary from 58K down to 45K rating units.

Source of High Ratings

What made the top performers do so well? Was it clock speed, cache size, cache size per core,
multithreading or Oracle’s core weighting factor for them?

Cache: It wasn't cache per core. The top three outperformed those with larger cache per core ratings
and larger total cache.

Speed: It wasn't clock speed. The top three outperformed others with higher clock rates.

It was a combination of Oracle’s weightings and the lack of a weighting differentiation among
processors with and without multithreading.

The top Xeon processor models had Hyper-threading which the lower performing models with faster
clocks, more cache, and more cache per core all lacked.

• Oracle DBMS for TPC-H Analysis Related Conclusions

Platform choice seems to be much more important at the high end, 10000 scale, and at the low end,
1000 scale, than for the middle, 3000 scale. It seems to imply that high-end hardware, e.g. Itanium, is
most appropriate for the highest scale, while high performing low–end hardware is most appropriate
for the lowest scale.

• Processor Cache Conclusions

I was very surprised. I had expected that gains from having a large processor cache or cache per core
would outperform both higher speed and Hyper-threading. I was wrong. It appears that 2MB of cache
per core is sufficient for Oracle in the TPC-C benchmark environment.

However, in a real deployment, you might run multiple middleware instances on one server or multiple
server instances on a hypervisor. These would benefit from more cache per core.

That is why, whenever more cache per core is available, I would recommend it, if the extra cost is
modest. Every 1 percent of improvement in cache hits makes a very large percent difference in the
percent of cache misses. For example, going from 90% cache hits to 91% is only a 1.1% improvement
in hits, but is a 10% improvement in misses, since they drop from 10% to 9%.

Cache misses are idle processor busy time. How can processor time be busy and idle at the same time?
In your processor utilization reporting, that idle time due to cache misses is counted as CPU busy time,
since the processor is in the midst of fetching or executing an instruction. Unless another thread can
successfully run during the other thread’s cache miss, the processor core is “busy” doing nothing

during the cache miss’s 50-100 CPU clock cycle duration.

In summary, your current or future situation might really benefit from the additional cache.

Futures

We cannot foresee with certainty what architectural & clock speed improvements will be, nor how
software vendors will weight them, nor how the software will perform on them. Forecasting is
complicated by the fact that some of the top results came from older generation processors. We can,
however speculate on the impact of processor speed, as long as the software vendor does not change
the weightings.

The Table 4 shows the results after factoring out the clock rate, but leaving the Oracle weighting, and
then comparing the results to the top rating, the XEON x5570. The results show that the Hyper-
threaded XEONs are still on top. The SPARC T3 comes next. One XEON, the Itaniums and POWER5’s
form another group, while the POWER6’s and other XEONs come in at the bottom.

As long as Oracle does not change the core factor weightings as processor speeds improve, which do
appear to be improving after a few year lag, the Hyper-threaded XEONs continue to lead. An Oracle
SPARC T3 (or its follow on) with a jump in speed might move it into competitive position in the
Performance per Weighted Core Rating. Unfortunately, without current generation Itanium 9300 and
Power7 in the published TPC-C results it is hard to forecast how they will fit.

If Oracle’s Core Weighting Factors change, it is easy enough to perform these calculations again,
applying the new factors to the old benchmarks, to see what the results would be. For example, Table
6 shows the changes that would result in the TPC-C P/WC ratings if Oracle were to replace its Core
Weightings with IBM’s Processor Value Units. It shows that:
• Hyper-threaded Xeon’s would stay on top;
• SPARC would drop 24 steps, completely out of the top 20;
• Power family members would rise 1 and drop 1, 3, 5, & 6 steps;
• Itanium would rise 4 & 5 steps.

Table 6
TPC-C on Oracle P/WC Ranking Shifts Due to Alternative Weightings

(similar rows have been omitted)

Server CPU Type

Order based on
Oracle Core
Weighting

Factors

Order based
on IBM

Processor
Value Units

Order
Difference

Intel Xeon Processor X5570 2.93GHz 1 1 0

Intel Xeon E5520 2.27 GHz 3 4 -1

IBM POWER6 - 4.7 GHz 4 3 1

Intel Xeon X5650 6-core 2.66GHz 5 5 0

IBM POWER5+ - 2.2 GHz 6 7 -1

SPARC T3 1.65GHz 7 31 -24

Intel Xeon QC X5460 - 3.16 GHz 8 6 2

IBM POWER5 - 1.9 GHz 9 12 -3

IBM POWER5 - 1.9 GHz 10 15 -5

IBM POWER5 - 1.9 GHz 12 18 -6

Intel Itanium2 Dual-Core - 1.6 GHz 13 8 5

Intel Xeon X7460 - 2.67 GHz 14 9 5

Intel Xeon X5355 - 2.66 GHz 17 13 4

Intel Itanium2 Dual-Core - 1.6 GHz 18 14 4

Intel Xeon QC 5440 - 2.83 GHz 19 17 2

Summary

It is possible to determine that the Hyper-threaded Intel Xeon, by a large margin, is the optimal price
performing processor to host Oracle DBMS workload today as long as that workload is comparable to
the TPC-C benchmark.

Middleware, application, scale, processor and weighting all really do matter. The methodology
produced clear results for Oracle running TPC-C workloads. For Oracle running TPC-H workloads, the
results very much depended on the scale of the benchmark. The observed best to worst ratio exceeds
7x in one case.

The main limitation on this methodology is finding or performing benchmarks that match your
middleware workload.

Acknowledgements

I wish to thank:
• The Transaction Processing Council for making it so easy to acquire benchmark results in readily

usable form;
• Oracle Corp. for making its Core Weighting Factor Table readily available; and especially,
• All the staff at all the companies who implemented, tuned, measured, and reported the

benchmarks.

Disclaimer

The views and opinions expressed in this article are those of its author, David A. Kra, and not
necessarily those of his employer, Infocrossing, Inc., and/or any affiliates of Infocrossing, Inc.

Trademarks

AMD and Opteron are trademarks or registered trademarks of Advanced Micro Devices, INC
Bull is a trademark or registered trademark of Bull SAS.
IBM, POWER5, POWER5+, POWER6 are all trademarks or registered trademarks of the International
Business Machines Corporation.
Infocrossing is a registered service mark of Infocrossing, Inc.
Intel, Xeon, Itanium, and Itanium2 are trademarks or registered trademarks of the Intel Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
Oracle, SPARC, and UltraSPARC are trademarks or registered trademarks of Oracle Corporation.
Red Hat is a trademark or registered trademark of Red Hat, Inc.
UNIX is a registered trademark of The Open Group.

References

Oracle Processor Core Factor Table (As updated 06/03/2011)
http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf

TPC-C results as a spreadsheet:
http://tpc.org/downloaded_result_files/TPC-C_results.xls

TPC-H results as a spreadsheet:
http://tpc.org/downloaded_result_files/TPC-H_results.xls

For an opposing opinion on the platform selection topic, see:
What Do Oracle Core Factors Really Mean?
 http://oracleoptimization.com/2010/04/21/what-do-oracle-core-factors-really-mean/

http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf�
http://tpc.org/downloaded_result_files/tpcc_results.xls�
http://tpc.org/downloaded_result_files/tpch_results.xls�
http://oracleoptimization.com/2010/04/21/what-do-oracle-core-factors-really-mean/�

Exploratory Study of Performance Evaluation Models for Distributed
Software Architecture

S.O. Olabiyisi; E.O. Omidiora
Department of Computer Science

& Engineering
Ladoke Akintola University of

Technology, Ogbomoso
Oyo State, Nigeria

Victor W. Mbarika
International Centre for

Information Technology and
Development

Southern University, Baton
Rouge, Louisiana, USA

 Faith-Michael
Uzoka

Department of
Computer Science &
Information Systems

Mount Royal University
Calgary, Canada

Mathieu Kourouma

Department of
Computer Science

College of Sciences
Southern University,

Baton Rouge,
Louisiana, USA

 Boluwaji A. Akinnuwesi
Department of Information

Technology
Bells University of

Technology, Ota, Ogun State
Nigeria

Hyacinthe Aboudja
Department of Computer

Science
School of Business

Oklahoma City University

Several models have been developed to evaluate the performance of
Distributed Software Architecture (DSA) in order to avoid problems that
may arise during system implementation. This paper presents a review
of DSA performance evaluation models with the view of identifying the
common properties of the models. It was established in this study that
the existing models evaluate DSA performance using machine
parameters such as processor speed, buffer size, cache size, server
response time, server execution time, bus and network bandwidth size
and lots of others. The models are thus classified to be machine-
centric. Moreover the involvement of end users in the evaluation
process is not emphasized. Software is developed in order to satisfy
specific requirements of the client organization (end-users); therefore,
involving users in evaluating DSA performance should not be
underestimated. This study suggests future works on establishing
contextual organizational variables that can be used to evaluate DSA.
Also to complement the existing models, works should be done on
development of user-centric performance evaluation model which will
directly involve the end-users in the evaluation of DSA using the
identified contextual organizational variables as parameters for
evaluation.

Keywords: Distributed software, Performance, Performance evaluation
model, Software system architecture, Client organization, machine-
centric, user-centric

INTRODUCTION

Today, distributed computing applications are used
by many people in real time operations such as
electronic commerce, electronic banking, online
payment, et cetera [22]. Distributed computing is
used as enabling technology for modern enterprise
applications; thus in the face of globalization and
ever increasing competition, Quality of Service (QoS)
attributes like performance, security, reliability,

scalability, and robustness are of crucial importance
[29]. Companies must ensure that the distributed
software (DS) they operate does not only provide all
relevant functional services, but also meet the
performance expectation of their customers.
Therefore it becomes imperative to analyze and
predict the expected performance of distributed
software systems at the level of the architectural
design in order to avoid the pitfalls of poor QoS
during system implementation.

Software architecture (SA) is a phase of software
design which describes how a system is
decomposed into components, how these
components are interconnected, and how they
communicate and interact with each other. This
phase of software design is a major source of errors
if the organizational structure of the different
components is not carefully defined and designed.
There are two parts to SA [6, 33]. The first part is the
micro-architecture which covers the internal structure
of the software system such as conceptual
architecture, module interconnection architecture,
execution architecture, and code architecture. The
second part of SA is the macro-architecture that
focuses on external factors that could influence the
design and implementation of the software system.
Examples of the external factors are: culture and
belief of people (users), government policies and
regulations, and disposition of people towards the
use of computer.

SA is an important phase in the software life cycle as
it is the earliest point and highest level of abstraction
at which useful analysis of a software system is
possible [35]. Hence, performance analysis at this
level can be useful to establish whether a proposed
architecture satisfies the end users’ requirements
and also meets the desired performance
specifications. It also helps to identify eventual errors
and verify that the quality requirements have been
addressed in the design and thus saving major
potential modifications later in the software
development life cycle or tuning the system after
deployment.. SA is considered the first product in an
architecture-based development process and
evaluation at this level should reveal requirement
conflicts and incomplete design descriptions from
stakeholders’ perspective [6].

Performance of software is a quality attribute that is
measured in any of the following metrics: system
throughput, responsiveness, resource utilization,
turnaround time, latency, failure rate, and fault
tolerance. Thus, assessing and optimizing system
performance is essential for the smooth and efficient
operation of the software system. There are several
approaches for evaluating the performance of
system architecture. One of the earliest approaches
is the fix-it-later approach [3] which advocates
software correctness and deferring performance
considerations to the integration testing phase. If
performance problems are detected, then, additional
hardware may be needed; otherwise, the software
will be tuned to correct the problems. This approach
has some limitations, such as,: it takes time to
acquire and install new hardware; also tuning the
software takes time and could be costly. Tuning may
distort the original software design and testing must
be repeated after code changes. This gives a
negative impression to users after it is corrected. The
rational for the fix-it-later approach is to save
development time and cost. This however will not be
realized, if initial performance is unsatisfactory

because of additional time and cost of tuning and
maintenance. Also, Connie [3] proposed a Design-
Based Evaluation and Prediction Technique
(ADEPT), an analysis technique used in conjunction
with the performance engineering discipline. ADEPT
was the strategy used to combat the fix-it-later
principle and supported the performance engineering
process. ADEPT evaluates the performance of
information system early in the life cycle using
specifications for both expected resources
requirement and upper bounds. The system design
is likely to be stable if the performance goal is
satisfied for the upper bound. ADEPT had the
following challenges: lack of automatic feedback
component, not robust enough to evaluate large and
complex systems, inability to eliminate unwanted
argument in the course of evaluation, and inability to
work in concurrent processing environments.

In recent years, several models have been
developed to constantly evaluate the performance of
DSA. The survey done in this paper provides the
developments over about a decade (1999 – 2010)
with the aim of identifying the parameters used by
each model for evaluating DSA performance and
also deduces the properties that are common to the
models. Further research direction is proposed as a
consequence.

RELATED WORKS

Many studies have been carried out on the survey of
system performance evaluation models with the
ultimate goal of providing recommendations for
future research activities. Those activities could
significantly improve the performance evaluation and
prediction of software system architecture. A survey
of the approaches to evaluate software performance
from 1960 to 1986 was done in [4]. The study
pointed out the breakthroughs leading to the
software performance engineering approach (SPE)
and a comprehensive methodology for constructing
software to meet performance goals. The concepts,
methods, tools, and use of SPE were summarized
and future trends in each area were suggested.

In [6] eight architecture analysis methods were
reviewed with the view of discovering similarities and
differences between these methods by making
classifications, comparisons, and appropriateness
studies. The eight methods considered are: SAAM
(Scenario-Based Architecture Analysis Method),
SAAMCS (SAAM Founded on Complex Scenarios),
ESAAMI (Extended SAAM by Integration in the
Domain), SAAMER (Software Architecture Analysis
Method for Evolution and Reusability), ATAM
(Architecture Trade-Off Analysis Method), SBAR
(Scenario-Based Architecture Reengineering),
ALPSM (Architecture Level Prediction of Software
Maintenance), and SAEM (Software Architecture
Evaluation Model). The authors discovered at that
time that SAAM was used for different quality
attributes like modifiability, performance, availability,
and security. In addition SAAM was applied in

several domains unlike the other methods that were
undergoing refinement and improvement as at that
time. As a result, some future works were proposed
to evaluate the effects of their various usages and
create a repeatable method based on repositories of
scenarios, screening and elicitation questions.

Three indications that concern software design
specifications, performance models, and analysis of
processes were highlighted in [31]. The following
recommendations were made in the paper: the use
of standard software artifacts like Unified Modeling
Language (UML) diagrams for software design
specifications; the existence of strong semantic
mapping between software artifacts and the
performance models as strategy to reduce the
performance model complexity and still maintaining a
meaningful semantic correspondence; use of
simulation in addition to analytical simulations to
address performance model complexity and
provision of feedback which is a key success factor
for a widespread use of performance analysis
models.

In [1] a review of performance prediction techniques
for component-based software systems was carried
out and the following recommendations were made:
(1) integration of quantitative prediction techniques in
software development process; (2) design of
component models allowing quality prediction and
building of component technologies supporting
quality prediction; (3) inclusion of quality attributes
such as reliability, safety or security in the software
development process; and (4) study of
interdependencies among the different quality
attributes to determine, for example, how the
introduction of performance predictability can affect
other attributes such as reliability or maintainability.

In [7], three foundational formal software analyses
were described. The authors reviewed emerging
trends in software model and identified future
directions that promise to significantly improve the
cost-effectiveness.

CLASSIFICATION OF DSA PERFORMANCE
EVALUATION MODELS

This paper classifies existing performance models
based on the technique used to develop the models.
The techniques are: (1) Factor Analysis; (2) Queuing
Network; (3) Petri net; (4) Pattern-Based; (5)
Hierarchical Modelling; (6) Performance Analysis
and Characterization Environment (PACE) Based;
(7) Component-Based Modelling; (8) Scenario-
Based; (9) Soft computing approach; (10) Relational
Approach; (11) Software Architecture Analysis
Methods (SAAM); (12) Aspectual Software
Architecture Analysis Methods (ASAAM); (13) Hybrid
Approaches such as UML-Petri net, UML-Stochastic
Petri net, Queue Petri Nets Approach and Soft
Computing Approach. The models are reviewed in
order to establish the kind of parameters used in
them to evaluate DSA.

Factor Analysis (FA) Based Approach
FA approach was used in [2] to develop a model for
analysing Information Technology (IT) software
projects with the aim of establishing the success or
failure of the project before it takes off. FA as
contained in SPSS and Statview software was used.
Fifty performance indices of IT projects planning,
execution, management, and control were
formulated. Eleven factors were extracted and
subjected to further analysis with a view to
estimating and ranking their contribution to the
success of IT projects. The model was tested using
sample life data gotten using questionnaires that
were administered to the principal actors of the
popular IT software projects in Nigeria. The
significant contribution of the research is the
provision of a working model that utilized both
quantitative and qualitative decision variables in
assessing the success or failure of IT projects. This
serves as template for evaluating IT projects prior to
its implementation. This model was not used to
evaluate performance of software system
architecture.

Queuing Network Based Models
This is a conventional modelling paradigm which
consists of a set of interconnected queues [28]. The
models based on Queuing Networks are categorized
in Table 1.

Table 1 Queuing Network Based Performance Models

Description of Model Parameters Considered Class of Parameter

[30] designed and
implemented object-
oriented queuing
network model – a
reusable performance
models for software
artifacts.

Buffer size, processor speed of server, queue size,
number of incoming request, request arrival time,
request departure time.

Machine centric
parameter

Petri Net Based Approach
Petri nets were introduced in 1962 by Dr. Carl Adam
Petri [27]. A Petri net is a graphical and
mathematical modelling tool [26]. It is a directed
bipartite graph with an initial state called the initial

marking. Petri Nets consist of four basic elements:
places, transitions, tokens, and arcs. System
performance models based on Petri net approach
are categorized in Table 2.

Table 2 Petri Net Based Performance Models

Description of model Parameters Considered Class of Parameter

 [18] developed
performance evaluation
model for Agent-based
system using petri net
approach

System load, system delays, system
routing rate, latency of process, CPU
time.

Machine centric parameters

 [20] did performance
analysis of Internet based
software retrieval systems
using petri nets

Network time. Machine centric parameters

[13] developed stochastic
petri nets model from UML
activity diagrams

Routing rate, action duration, system
response time.

Machine centric parameters

 [31] integrated
performance and
specification model to
provide a tool for
quantitative evaluation
of software architecture
at the design phase.

Number of service centers, service rate of service
center, arrival rate of requests at service centre, number
of servers in service centers, routing procedure of
requests, Number of request circulating in the system,
physical resources available system workloads,
network topology.

Software process centric
and machine centric
parameters

 [35] modeled layered
software system as a
closed Product Form
Queuing Network
(PFQN) and solve it for
finding performance
attributes of the system

Range of number of clients accessing the system,
average think time of each client, number of layers in
the software system, relationship between the machines
and software components, number of CPUs and disks
on each of the machine and thread limitation (if any),
uplink and downlink capacities of the connectors
connecting machines running adjacent layers of the
system, size of packets of the links, service time
required to service one request by a software layer,
forward transition probability, rating factors of the CPU
and the disks of each machines in the system

Software and Machine
centric parameters

[31] proposed an
approach based on
queuing networks
models for
performance prediction
of software systems at
the software
architecture level,
specified by UML.

Same as in [35] Software and Machine
centric parameters

 [12] developed
Software Architecture
and Model Extraction
(SAME) technique that
extract communication
patterns from
executable designs or
prototype that use
message passing, to
develop a Layered
Queuing Network
Performance Model in
an automated fashion.

Same as in [35] Software and Machine
centric parameter

[14] translated UML
activity diagram into
stochastic Petri net model
that allows to compute
performance indices.

Routing rate, action duration, system
response time.

Machine centric parameters

[23] derived performance
parameters from
Generalized Stochastic
Petri Net (GSPN) using
Markov chain theory.

Routing rate, action duration, system
response time.

Machine centric parameters

Queuing Petri Net (QPN) Based Models
The hybrid of Petri Net and Queuing Networks is
Queuing Petri Nets (QPNs) which facilitates the
integration of hardware and software aspects of
system behaviour into the same model. In addition to
hardware contention and scheduling strategies,
using QPNs, one can easily model simultaneous
resource possession, synchronization, blocking, and
contention for software resources. Thus QPNs

combines Queuing Networks and Petri Nets into a
single formalism in order to eliminating their
disadvantages. QPNs allow queues to be integrated
into places of Petri Nets and this enables the
modeller to easily represent scheduling strategies
and to bring the benefits of Queuing Networks into
the world of Petri Nets [28]. System performance
models based on Queuing Petri net approach are
categorized in Table 3.

Table 3 Queuing Petri Net Based Performance Models

Description of Model Parameters Considered Class of Parameters

[28] applied QPN formalism
to analyse the performance
of distributed e-business
system.

Service demand of queue, service rate of
queue, token population of queue, queue
size, buffer size, processor speed of
server, routing rate.

Machine centric parameters

[29] presented a novel case
study of a realistic state-of-
the-art distributed
component-based system,
showing how the QPN
modelling formalism can be
exploited as software system
performance prediction tool.

Same as in [28]. Machine centric parameters

Performance Analysis and Characterization
Environment Based Approach
The motivation to develop Performance Analysis and
Characterization Environment (PACE) based
approach in [15] was to provide quantitative data
concerning the performance of sophisticated
applications running on high performance systems.
The framework of PACE is a methodology based on
a layered approach that separates out the software
and hardware system components through the use
of a parallelization template. This is a modular
approach that leads to readily reusable models,
which can be interchanged for experimental analysis.
Each of the modules in PACE can be described at
multiple levels of details thus providing a range of
result accuracies, but at varying costs in terms of
prediction evaluation time. PACE is aimed to be
used for pre-implementation analysis, such as
design or code porting activities, as well as, for on-
the-fly use in scheduling systems. The core
component of PACE is a performance specification
language, CHIP

3
S (Characterization Instrumentation

for Performance Prediction of Parallel Systems).
CHIP

3
S provides a syntax that allows the description

of the performance aspects of an application and its
parallelization to be expressed. This includes control
flow information, resource usage information (for
example number of operations), communication
structures, and mapping information for a parallel or
distributed system. The software object in the PACE
system were created using the Application
Characterization Tool (ACT). ACT aids the
conversion of sequential or parallel source code into
the CHIP

3
S language via the Stanford Intermediate

Format (SUIF). ACT performs a static analysis of the
code to produce the control flow of the application,
count the number of operations in terms of high-level
language implemented, and also the communication
structure. The hardware objects of the model are
created using a Hardware Model Configuration
Language (HMCL) by specifying system-dependent
parameters. On evaluation, the relevant sets of
parameters are used and supplied to the evaluation
methods for each of the component models.

Hierarchical Performance Modeling Approach
In [32] a Hierarchical Performance Modelling (HPM)
technique for distributed systems, which
incorporated different level of modelling abstraction,
was presented. HPM is a technique to model
performance for different layers of abstraction. It
includes several layers of organization from primitive
operation to software architecture, therefore,
providing a degree of accuracy that cannot be
achieved with single layer models. The application is
developed in a top-down fashion from general to
more specific, but performance information is
generated in bottom-up method, thus linking the
different levels of analytic models into a composite
model. This approach support specification and
performance model generation that incorporates
computation and communication delays along with
hardware profile characteristics to assist in the
evaluation of performance alternatives. HPM models

provide a quantitative performance assessment of an
entire system comprising of hardware, software, and
communication. The HPM provided a well-defined
methodology to allow system designers to evaluate
the application based on the system requirements of
their application and fine tune the values of
performance parameters.

Pattern Based Approach
Design patterns are defined as description of
communicating objects and classes that are
customized to solve a general design problem in a
particular context. The components of design pattern
are: Pattern name, Intent, Motivation, Applicability,
Structure, Participants, Collaborations,
Consequences, Implementation, Sample code,
Known uses and Related pattern. Performance
models based on pattern based approach are
presented in Table 4.

Table 4 Pattern Based Performance Models

Description of Model Parameters Considered Class of Parameter

[19] presented an approach
based on patterns to develop
performance models for object
oriented software system in
the early stages of the
software development
process. This complement the
approach given in [18]

Event load, time to perform an action, request
arrival time, request service time, number of
concurrent users

Software process centric
parameters

[21] presented a pattern-based
approach to model the
performance of software
system and used it to evaluate
the performance of mobile
agent system

Same as in [19] Software process centric
parameters

[9] presented a pattern-based
performance completion for
message-oriented middleware

System configuration (hardware & network
components), message size (incoming &
outgoing), delivery time for message, number
of message sent, size of message sent,
number of message delivered, size of
message delivered, transaction/request size,
buffer/pool size

Software process centric
parameters and machine
centric parameters

Soft Computing Approach
Soft computing is an approach to computing which
parallels the remarkable ability of the human mind to
reason and learn in an environment of uncertainty
and imprecision [8]. It is a consortium of
methodologies centering in fuzzy logic (FL), artificial
neural networks (ANN) and evolutionary computation
(EC). These methodologies are complementary and
synergistic, rather than competitive. They provide in
one form or another flexible information processing
capability for handling real life ambiguous situations.
Soft computing aims to exploit the tolerance for
imprecision, uncertainty, approximate reasoning, and
partial truth in order to achieve tractability,

robustness, and low-cost solutions. The attributes of
these models are often measured in terms linguistic
values, such as very low, low, high, and very high.
The imprecise nature of the attributes constitutes
uncertainty and vagueness in their (subsequent)
interpretation. Performance models based on soft
computing approach are presented in Table 5. The
advantage of Soft computing models particularly
fuzzy logic and ANN are [10]: they are more general
and they mimic the way in which humans interpret
linguistic values and the transition from one linguistic
value to a contiguous linguistic value is gradual
rather than abrupt.

Table 5 Performance Models Based Soft Computing Approach

Description of Models Parameters Considered Class of Parameter

[10] applied fuzzy logic to
measure similarity of
software projects when their
attributes are described by
categorical values (linguistic
values in fuzzy logic)

Seventeen parameters: software size, project
mode plus 15 cost drivers.

Software process
centric and machine
centric parameters

[11] presented a new
technique based on fuzzy
logic, linguistic quantifiers
and analogy-based
reasoning to estimate the
cost of or effort of software
projects when they are
described by either numerical
data or linguistic values.

Same as in [10] Software process
centric and machine
centric parameters

[17] showed how fuzzy logic
can be applied to computer
performance work to simplify
and speed analysis and
reporting.

CPU Queue length, memory (RAM) available,
pages input per second, read time, write time,
I/Os per second.

Machine centric
parameters

[25] Developed a fuzzy
model for evaluating
information system projects
based on their present value
using fuzzy modelling
technique.

Three parameters representing three possible
values of project costs, benefits, evaluation
periods, and discount rate.

Software process
centric parameters

Other Performance Models
In [5], multivariate Adaptive Regression Splines
(MARS) was used for software performance
analysis. A resource function was designed and
automated, having the following parameters - size of
data objects, number of disk blocks to be read, size
of messages to be processed, memory and cache
size, processor speed, bus and network bandwidth.

In [16], PASA, a method for performance
assessment of software architectures, was
developed and it was scenario-based. It identifies
potential areas of risk within the architecture with
respect to performance and other quality objectives.
It identifies strategies for reducing or eliminating the
risks if a problem is found. Scenario for important
workloads are identified and documented. The
scenarios provide means of reasoning about the
performance of the software as well as other
qualities and they serve as starting point for
constructing performance models of the architecture.

ASAAM (Aspectual Software Architecture Analysis
Method) is scenario-based proposed in [34]. It
introduces a set of heuristic rules that help to derive
architectural aspects and the corresponding tangled
architectural components from scenarios. It takes as
input the architecture design and measures the
impact of predefined scenarios on it in order to
identify the potential risks and the sensitive points of
the architecture. This helps to predict the quality of
the system before it is built and therefore reducing
unnecessary maintenance costs.

In [36], performance analysis based on requirements
traceability was presented. Requirement traceability
is critical to providing a complete approach which will
lead to an executable model for performance
evaluation. The paper investigated the software
architectures that are extended based on the
performance requirements traceability to represent
performance property. The extended architectures
are then transformed into a simulation model colored
Generalized Stochastic Petri Nets (GSPN) and the
simulation results are used to validate performance
requirements and evaluate system design. The
parameters considered are queue length, number of
requests to be serviced, server response time,
server execution time, and processor speed.

GENERAL PROPERTIES OF THE EXISTING DSA

PERFORMANCE EVALUATION MODELS

From survey of the existing DSA performance
evaluation models, the following common attributes
are identified:

i. The models are algorithmic using hard computing

principles.
ii. Parameters for evaluation are machine centered

and they are objective. For example, processor
speed, bus and network bandwidth size, RAM
size, cache size, server response time, server
execution time, number of disk to be read and
message size. Therefore the models are
machine-centric.

iii. The models are implemented at the
architectural stage of the software life cycle.

iv. Though in the existing models, the contributions
of the client organization (end users) during
software development process were
acknowledged but none of the models draws
parameters for evaluation from the contextual
organizational decision variables.

v. The models are re-useable and scalable.
vi. Performance metrics considered are mostly the

following: throughput, response time, and
resource utilization.

viii. The models are limited by their inability to cope
with uncertainties and imprecision of data or
information surrounding software projects in the
early stage of the development life cycle.

ix. The conceptual structures of some model (for
example, probabilistic models) that can
represent vague information are inadequate for
dealing with problems in which information is
perception-based and is expressed in linguistic
form.

x. The models are computationally intensive and
are intolerant of noise. They cannot handle
categorical data other than binary valued
variables.

CONCLUSION AND FUTURE WORK

Conclusion
In this paper, a review of research works on
performance evaluation models from 1999 to 2010 is
presented in order to establish the properties
common to these models. It was deduced that most
models for evaluating DSA performance are
machine-centric. The following are some of the
evaluation parameters identified: buffer size,
processor speed, cache size, server response time,
server execution time, number of disk block to be
read, queue size, request arrival time, request
departure time, bus size, network bandwidth size
(uplink and down link), number of Central Processing
Unit (CPU), number of request circulating in the
system, system routing rate, latency of system,
network time, system RAM (Random Access
Memory) size, size of data object, size of message to
be processed. The performance evaluation models
are, therefore, classified as machine-centric models.
They are established and used to evaluate DSA
performance with respect to satisfying the machine
and system process requirements. However
subjective decision variables of users are not
considered in the machine-centric models; also the
models cannot cope with uncertainties and
imprecision of data or information surrounding
software projects in the development life cycle.
Users are involved in DSA development in order to
feed the software developers with the necessary
organizational information. This helps the software
developers to develop software system that will be
accepted by end users and satisfies the
organization’s requirements using available machine
infrastructure. The question is “how do we measure

the performance of the DSA from users’ perspectives
in order to establish the extent of responsiveness of
the DSA to the requirements of the client
organization”. It is hoped that future research works
will address this question.

Future Work
Management of the client organization and the end
users are key players in software development
process. Therefore, contextual organizational
decision variables (for example: Organizational goals
and task; Level of users competence/experience in
Information Technology; Information requirements of
users and the format; Internal service of the
organization, and their relationships; The
organization’s defined functions required in the user
interface; Organization’s policies, rules or
procedures for transaction process flow etcetera),
should not be underestimated while establishing the
variables to evaluate performance of software
architecture. We therefore propose, as a result, that
future works should identify and verify with some
empirical analysis, both objective and subjective
contextual organizational decision variables that
could influence the choice of architectural style and
design pattern made by the software developer. We
are of the view that if some organizational variables
can be established as parameters to evaluate DSA
performance, it will be possible to have some DSA
performance evaluation models that will be user-
centric or a hybrid model having both organizational
decision variables and machine/system variables as
parameters for evaluation.

REFERENCES

[1] Bailey, H.D., Snavely, A. “Performance

Modeling: Understanding the Present and
Predicting the Future”, Proceedings of Euro-Par,
Lisbon, Portugal: 2005

[2] Chiemeke, S.C. “Computer Aided System for
Evaluating Information Technology Projects”,
PhD thesis submitted to the School of
Postgraduate Studies, Federal University of
Technology, Akure, Ondo State, Nigeria: 2003.

[3] Connie, U.S. “Increasing Information System
Productivity”, Proceedings of the Computer
Measurement Group’s International
Conference,The Computer Measurement Group
Inc: 1981.

[4] Connie, U.S. “The Evolution of Software
Performance Engineering: A Survey”,
Proceedings of ACM Fall Joint Computer
Conference: 1986, pp 778 – 783.

[5] Courtois, M., Woodside, M. “Using Regression
Splines for Software Performance Analysis”,
Proceedings of WOSP, Ontario, Canada. 2000.

[6] Dobrica, L., Niemela, E. “A Survey on Software
Architecture Analysis Methods”, IEEE
Transactions on Software Engineering, (28:7),
2002,

[7] Dwyer, B.M., Hatcliff, J., Pasareanu, S.C.,
Visser, W. “Formal Software Analysis: Emerging
Trends in Software Model Checking”,
Proceedings of Future of Software Engineering
(FOSE’07): 2007.

[8] Gary, R.G., Frank, C., 1999. “Application of
Neuro-Fuzzy Systems to Behavioral
Representation in Computer Generated
Forces”, Proceedings of 8

th
 Conference on

Computer Generated Forces and Behavioural
Representation, Orlando FL: 1999.

[9] Happe, J., Friedrich, H., Becker, S., Reussner,
H.R. “A Pattern-Based Performance Completion
for Message-Oriented Middleware”,
Proceedings of WOSP’08, Princeton, New
Jersey: 2008.

[10] Idris, A., Abran, A. “A Fuzzy Based Set of
Measures for Software Project Similarity:
Validation and Possible Improvements”,
Proceedings of METRICS 2001, London,
England: 2001, pp 85 – 96.

[11] Idris A., Alain A. and Khoshgoftaar. “Fuzzy
Case-Based Reasoning Models for Software
Cost Estimation”. 2004. Available @
http://www.gelog.etsmtl.ca/publications/pdf/803.
pdf

[12] Israr, A., Tauseef, L.H.D., Franks, G.,
Woodside, M. “Automatic Generation of Layered
Queuing Software Performance Models from
Commonly Available Traces”, Proceedings of
WOSP’05, Palma de Mallorca, Spain: 2005

[13] Juan, P.L., Jose M., Javier, C. “From UML
Activity Diagrams to Stochastic Petri Nets:
Application to Software Performance
Engineering”, Proceedings of WOSP’04,
Redwood City, California: 2004.

[14] Juan, P.L., Jose, M., Javier, C. “On the use of
Formal Models in Software Performance
Evaluation”, News in the Petri Nets World,
Dec. 27, 2008. Available @
 <http://webdiis.univzar.es.crpetri/paper/jcam
pos/02_LGMC_JJCC.pdf>

[15] Junwei, C., Darren, J.K., Efstathios, P.,
Graham, R.N. “Performance Modeling of
Parallel and Distributed Computing Using
PACE”, Proceedings of IEEE International
Performance Computing and Communications
Conference, IPCCC-2000, Phoenix: 2000, pp
485 – 492.

[16] Lloyd, G.W., Connie, U.S. “PASA
SM

: An
Architectural Approach to Fixing Software
Performance Problems”, Software Engineering
Research and Performance Engineering
Services: 2002.

[17] Maddox, M. “Using Fuzzy Logic to Automate
Performance Analyses”, Proceedings of the
Computer Measurement Group’s 2005
International Conference, The Computer
Measurement Group inc: 2005.

[18] Merseguer, J., Javier, C., Eduardo, M.
“Performance Evaluation for the Design of
Agent-Based Systems: A Petri Net Approach”,
Proceedings of the workshop on Software

Engineering and Petri Nets within the 21
st

International Conference on Application and
Theory of Petri Nets, University of Aarhus:
2000a. pp 1 – 20.

[19] Merseguer, J., Javier, C., Eduardo, M. “A
Pattern-Based Approach to Model Software
Performance”, Proceedings of the 2

nd

International Workshop on Software and
Performance, Ottawa, Ontario: 2000b, pp 137-
142.

[20] Merseguer, J., Campos, J., Mena, E.
“Performance Analysis of Internet Based
Software Retrieval Systems Using Petri Nets”,
Proceedings of 4th ACM International Workshop
on Modeling, Analysis and Simulation of
Wireless and Mobile System, Rome Italy: 2001.

[21] Merseguer, J., Javier, C., Eduardo, M. “A
Pattern-based Approach to Model Software
Performance Using UML and Petri Nets:
Application to Agent-based Systems”,
Proceedings of 7

th
 World Multiconference on

Systemic Cybernetics and Informatics, Orlando,
Florida: 2003, (9), pp 307 – 313.

[22] Merseguer, J., Javier, C. “Software
Performance Modeling Using UML and Petri
Nets”, LNCS2965, Springer Verlag: 2004, pp
265-289.

[23] Motameni, H., Movaghar, A., Siasifar, M.,
Montazeri, H., Rezaei, A. “Analytic Evaluation
on Petri Net by Using Markov Chain Theory to
Achieve Optimal Models”, World Applied
Sciences Journal (3:3), 2008, pp 504 – 513.

[24] Olabiyisi S.O, Omidiora E.O, Uzoka F.M.E,
Victor Mbarika, Akinnuwesi B.A. “A Survey of
Performance Evaluation Models for Distributed
Software System Architecture”. Proceedings of
International Conference on Computer Science
and Application, World Congress on
Engineering and Computer Science (WCECS
2010), San Francisco: 2010, Vol. 1, pp 35 – 43.

[25] Omitaomu, A.O., Adedeji, B. “Fuzzy Present
Value Analysis Model for Evaluating Information
System Projects”, Engineering Economist
(52:2), 2007, pp 157 – 178.

[26] Peterson, J.L. Petri Net Theory and the
Modeling of Systems, Prentice Hall, 1981.

[27] Petri, C.A. “Communication with Automata”.
Technical Report RADC-TR-65-377, Rome Air
Dev. Centre, New York: 1962

[28] Samuel, K., Alejandro, B. “Performance
Modeling of Distributed E-Business Applications
Using Queuing Petri Nets”, Proceedings of IEEE
International Symposium on Performance
Analysis of Systems and Software: 2003, pp
145 – 153.

[29] Samuel, K. “Performance Modeling and
Evaluation of Distributed Component-Based
System Using Queuing Petri Nets”, IEEE
Transactions on Software Engineering. (32:7),
2006, pp 487 – 502.

[30] Savino-Vazquez, N., Puigjaner, R. “A
Component Model for Object-Oriented Queuing
Networks and its Integration in a Design

Technique for Performance Models”,
Proceedings of the 2001 Symposium on
Performance Evaluation of Computer and
Telecommunication System (SPECTS 2001),
Orlando, Florida: 2001.

[31] Simonetta, B., Roberto, M., Moreno, M.
“Performance Evaluation of Software
Architecture with Queuing Networking Model”,
Proceedings of ESMc’04, Paris, France: 2004.

[32] Smarkusky, D., Ammar, I.A., Sholi, H.
“Hierarchical Performance Modeling for
Distributed System Architecture”. Available @
<http://www.cs.sfu.ca/~mhefeeda/papers/ISC20
00-HPM.pdf>, 2000.

[33] Soni, D., Nord, R., Hofmeister, C. “Software
Architecture in Industial Applications”,
Proceedings 17th International Conference on

Software Engineering (ICSE17): 1995, pp 196-
207.

[34] Tekinerdogan B. “ASAAM: Aspectual Software
Architecture Analysis Method”, Early Aspects:
Aspect-Oriented Requirements Engineering and
Architecture Design Workshop, Boston, USA:
2003.

[35] Vibhu, S.S., Pankaj J., Kishor S.T. “Evaluating
Performance Attribute of Layered Software
Architecture”, CBSE 2005: Vol. 3489 of LNCS,
pp 66-81.

[36] Wise, J.C., Chang, C.K., Xia, J., Cleland-Huang,
J. “Performance Analysis Based on
Requirements Traceability”, Technical Report,
Dept of Computer Science, Iowa State
University, Iowa: 2005.

Note: This work is a revised version. The first
version is [24] that was presented in the International
Conference on Computer Science and Application,
World Congress on Engineering and Computer
Science (WCECS 2010), San Francisco, USA,
October 20 – 22, 2010. It is one of the preliminary
results of an ongoing research that focuses on
developing User-Centric Model to evaluate the
performance of Distributed Software Architecture.

Acknowledgement: This research is partly
sponsored by the National Science Foundation
(NSF) under Grant Nos. 1036324 and 0811453 and
UNCFSP NSTI under the supervision of Dr Victor
Mbarika in International Centre of Information
Technology and Development, Southern University
and A & M College, Baton Rouge, Louisiana, USA.
Also Bells University of Technology, Ota, Ogun
State, Nigeria is acknowledged for providing a partial
support.

About the Authors

S.O. Olabiyisi, Ph.D. is a Senior Lecturer in the
Department of Computer Science and Engineering,
LAUTECH, Ogbomosho, Nigeria. His Research
interests are Software Performance Evaluation,
Computational Mathematics, Discrete Structures and
Softcomputing. (e-mail:tundeolabiyisi@hotmail.com)

E.O Omidiora, Ph.D. is a Senior Lecturer in the
Department of Computer Science and Engineering,
LAUTECH, Ogbomosho, Nigeria. His research
interests are Computer Architecture, Softcomputing
and e-Learning system. (e-mail:
omidiorasayo@yahoo.co.uk)

F.M.E. Uzoka, Ph.D. is a Faculty member in the
Department of Computer Science and Information
System, Mount Royal University, Calgary, Canada.
He was a Senior Lecturer in Information Systems,
University of Botswana. He conducted a two year
postdoctoral research at the University of Calgary
(2004-2005). His research interests are

Organizational Computing, Decision Support
Systems, Technology Adoption and Innovation and
Medical Informatics. He serves as a member of
editorial/review board of a number of Information
Systems journals/conferences
(e-mail: uzokafm@yahoo.com).

Boluwaji A. Akinnuwesi, Ph.D., is a Lecturer with
Department of Information Technology, Bells
University of Technology, Ota, Ogun State, Nigeria.
He is also the Director of the Computer Centre in
Bells University of Technology. He was a Research
Scholar in International Centre of Information
Technology and Development in Southern
University, Baton Rouge, Louisiana, USA. His
research area is Software Performance Engineering.
His other research interest areas are Medical
Informatics, Soft-computing, Expert System, and
Software Engineering. He is a professional member
of ACM, CPN (Computer Professional Registration
Council of Nigeria) and NCS (Nigeria Computer
Society). e-mail: akinboluade@yahoo.com.

Victor Wacham A. Mbarika, Ph.D. is the Executive
Director, International Center for IT and
Development (ICITD, Southern University, T. T
Allain #321, Baton Rouge, LA 70813, USA. He is
Editor-in-Chief of The African Journal of Information
Systems (AJIS, Phone: +1 225 715 4621 or +1 225
572 1042; Fax: +1 225 208 1046. (Email:
victor@mbarika.com)

Mathieu Kokoly Kourouma, Ph.D., is a professor in
the Department of Computer Science, College of
Sciences, at Southern University and A&M College.
He has a Bachelor in Electrical and Computer
Engineering from the Polytechnic Institute of the
University of Conakry, Guinea, a Master and Ph.D. in
Telecommunications and Computer Engineering,
respectively, from the University of Louisiana at
Lafayette - U.S.A. His research areas of interest are
wireless communications, Sensor Networks,
Cognitive Radio Networks, Telecommunications,
Network Performance Analysis, Software
Engineering and Development, and Database
Design. He is a professional member of ACM, NSTA,

and AAC&U. Emails: mkkourouma@cmps.subr.edu
and mkourouma@gmail.com. Web site:
www.cmps.subr.edu. Office number: (225)771-3652.

Hyacinthe Aboudja, Ph.D. is currently visiting
Assistant Professor in the Computer Science
Department of the School of Business at Oklahoma

City University. His research interest ranges from
computer architecture, Real-time Systems Design,
Theory of computing, System Performance Analysis,
Software Engineering, and Computer Simulation of
Biological Systems. He is a professional member of
ACM and IEEE. (email: haboudja@okcu.edu)

2011 BOARD OF DIRECTORS
AND CMG STAFF

President
Donna S. Folkerts
ACS, Inc.
Bus: 630-468-2262
cmgpres@cmg.org

Vice President
Frank M. Bereznay
IBM
Bus: 626-564-7530
Fax: 626-564-3595
cmgvp@cmg.org

Treasurer
Charles Savage
Bank of America
Bus: 404-607-3060
Fax: 706-387-0395
treasurer@cmg.org

Secretary
Kathy J. Steffens

Bus: 614-262-7952
secretary@cmg.org

Director
Glenn R. Anderson
IBM
Bus: 312-635-1319
Fax: 312-635-1319
grander@us.ibm.com

Director
Rick Lebsack
IBM
Bus: 303-773-7985
ralebsa@us.ibm.com

Director
Adam Grummitt
Bus: +44 (0) 1823 259231
Fax:
adam@grummitt.com

Director
Xianneng Shen
RMS Inc.
Bus: 510-608-3394
shennonshen@gmail.com

Director
Alexander Podelko
Oracle Corporation
Bus: 203-703-4355
Fax: 203-595-8516
alex.podelko@oracle.com

Director
Dave Thorn
Bus: 856-216-7550
dthorn55@gmail.com

General Chair
Charles T. McGavin, Jr.
CHE Consulting Inc.
Bus: 510-523-1184
cmgpc@cmg.org

Office
CMG Headquarters
Computer Measurement Group, Inc.
Bus: 856-401-1700
Fax: 856-401-1708
cmghq@cmg.org

Office Manager
Barbara Flemming
Computer Measurement Group, Inc.
Bus: 856-401-1700
Fax: 856-401-1708
barbara@cmg.org

Program Coordinator
David Troxel
Computer Measurment Group, Inc.
Bus: 856-401-1700
Fax: 856-401-1708
david@cmg.org

Conference Coordinator I
Michelle C. Cervantes
Computer Measurement Group, Inc.
Bus: 856-401-1700
Fax: 856-401-1708
michelle@cmg.org

Administrative Assistant
Kathleen M. Kinnarney
Computer Measurement Group, Inc.
Bus: 856-401-1700
Fax: 856-401-1708
kathy@cmg.org

Corporate Bookkeeper
Linda G. Stermer
LGS Bookkeeping Services
Bus: 805-238-2410
Fax: 805-238-2458
lgstermer@aol.com

Food & Beverage
Hugh Hunt
Hunt Conference Group, Inc.
Bus: 817-410-4660
Fax: 817-410-4661
hugh@huntconferencegroup.com

	Letter from the Editor CMG Journal 130.pdf
	Sweetz paper
	Wilson paper
	Tiwari paper
	Not Your Fathers or Grandfathers Mainframe Any More - v4
	MiddlewarePricePerformanceOptimization-FINAL
	Exploratory Study of Performance Evaluation Models for Distributed Software Architecture (3)

